[机器学习入门] 李宏毅机器学习笔记-23(Support Vector Machine;支持向量机)

这篇博客介绍了支持向量机(SVM)的概念,包括Hinge Loss、线性SVM及其梯度下降法、核方法如Radial Basis Function Kernel和Sigmoid Kernel。对比了SVM与深度学习的区别,强调SVM中Hinge Loss对正例和负例的不同处理策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[机器学习入门] 李宏毅机器学习笔记-23(Support Vector Machine;支持向量机)

PDF VIDEO

Support Vector Machine

Outline

这里写图片描述

Hinge Loss

Binary Classification

分为三步。
δ不可微分,所以变化一下。

这里写图片描述


step 2 :Loss function

红色这条线就是Square Loss的表现ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值