败者树 和 胜者树---数组实现

本文介绍了败者树和胜者树的概念,它们是树形选择排序的变型,常用于快速找到最值。胜者树记录每次比赛的胜者,败者树记录败者。在叶子节点值变化时,两者都能快速重构以找到新的最值。文章通过实例详细阐述了胜者树和败者树的构建和调整过程,并对比了它们在排序和维护性能上的差异。

胜者树和败者树都是完全二叉树,是树形选择排序的一种变型。每个叶子结点相当于一个选手,每个中间结点相当于一场比赛,每一层相当于一轮比赛。

      不同的是,胜者树的中间结点记录的是胜者的标号;而败者树的中间结点记录的败者的标号。

       胜者树与败者树可以在log(n)的时间内找到最值。任何一个叶子结点的值改变后,利用中间结点的信息,还是能够快速地找到最值。在k路归并排序中经常用到。

一、胜者树

       胜者树的一个优点是,如果一个选手的值改变了,可以很容易地修改这棵胜者树。只需要沿着从该结点到根结点的路径修改这棵二叉树,而不必改变其他比赛的结果。

Fig. 1

Fig.1是一个胜者树的示例。规定数值小者胜。

  1. b3 PK b4,b3胜b4负,内部结点ls[4]的值为3;
  2. b3 PK b0,b3胜b0负,内部结点ls[2]的值为3;
  3. b1 PK b2,b1胜b2负,内部结点ls[3]的值为1;
  4. b3 PK b1,b3胜b1负,内部结点ls[1]的值为3。.

当Fig. 1中叶子结点b3的值变为11时,重构的胜者树如Fig. 2所示。

  1. b3 PK b4,b3胜b4负,内部结点ls[4]的值为3;
  2. b3 PK b0,b0胜b3负,内部结点ls[2]的值为0;
  3. b1 PK b2,b1胜b2负,内部结点ls[3]的值为1;
  4. b0 PK b1,b1胜b0负,内部结点ls[1]的值为1。.
<think>好的,我现在需要回答用户关于多路归并外排序中败者实现与原理的问题。首先,我得回顾一下用户的问题系统给的引用内容。用户想知道败者的使用方法实现细节,而系统提供的引用提到了败者的结构、初始化以及更新过程。首先,我应该明确多路归并外排序的基本概念。外排序通常用于处理大数据,当数据无法全部装入内存时,需要分块排序后再归并。多路归并相比二路归并能减少归并次数,提高效率。而败者是优化多路归并的关键数据结构。 接下来,败者的原理。根据引用内容,败者是完全二叉,每个节点记录败者的信息。胜者晋级,最终根节点是冠军,也就是当前最小的元素。这需要解释清楚败者如何减少比较次数,尤其是在多路情况下的优势。 然后是结构实现。引用里提到败者使用一维数组,分为叶子节点、比较节点冠军节点。需要详细说明每个部分的作用,比如叶子节点对应各个归并段当前元素,比较节点存储败者的归并段索引。初始化时,每个叶子节点对应的元素需要进行比较,填充败者。初始化过程可能比较复杂,需要一步步构建。比如,从叶子节点开始两两比较,父节点记录败者胜者向上继续比较,直到根节点。初始时,可能需要一个辅助空间存储最小值,如引用中的MINKEY。 然后是调整过程。当冠军被取出后,需要从对应的归并段中取出下一个元素,替换叶子节点中的值,并重新调整败者。调整时只需要沿着该叶子节点到根的路径进行比较,不需要处理其他分支,这减少了时间复杂度。引用中提到只需要更新相关路径,其他节点不影响,这很重要。 还要比较败者胜者的区别。胜者每次比较需要知道胜者败者,而败者只记录败者胜者继续向上比较。这可能减少数据移动的次数,提高效率,特别是在多路情况下。 在实现细节上,代码结构可能涉及数组的索引管理,比如ls数组的大小是2k,其中k是归并路数。叶子节点从ls[k]到ls[2k-1],而比较节点是ls[1]到ls[k-1]。冠军节点是ls[0]。这需要清晰的数组结构说明。可能还需要举例说明,比如当k=5时,数组的结构如何,如何初始化,如何调整。但用户可能更关注逻辑而不是具体代码,不过提供伪代码或示例能帮助理解。另外,引用中的内容提到附加空间bk,用于存储当前各归并段的元素,这个辅助空间的作用需要解释清楚,比如在调整时临时存储新取出的元素,然后更新到败者中。 最后,要确保回答符合系统指令,使用正确的中文,数学公式用$...$,独立公式用$$...$$,并生成相关问题。同时引用用户提供的引用内容,但用户提供的引用是关于快速排序的示例,可能需要注意。不过用户给出的引用是关于归并排序败者的,所以需要正确引用[^1][^2]。 可能还需要检查是否有遗漏的关键点,比如败者的时间复杂度,或者实际应用中的注意事项。例如,多路归并的路数选择对性能的影响,或者如何处理归并段耗尽的情况。总结,我需要分步骤解释败者的原理、结构、初始化、调整过程,对比胜者,并说明其优势。同时确保引用正确,结构清晰,最后生成相关问题。</think>### 多路归并外排序与败者实现原理 #### 一、败者核心作用 败者是多路归并外排序中减少比较次数的关键数据结构。通过记录每轮比较的“败者”信息,可将每次插入新元素后的调整复杂度从$O(k)$降低到$O(\log k)$,其中$k$为归并路数[^1]。 #### 二、数据结构设计 1. **完全二叉结构**:使用一维数组存储,总节点数为$2k$: - 叶子节点:$k$个,存储各归并段当前元素(对应数组后半部分$ls[k..2k-1]$) - 内部节点:$k-1$个,记录败者的归并段编号(对应数组$ls[1..k-1]$) - 冠军节点:$ls[0]$存储最终胜者编号[^1] $$ \text{示例结构(k=3): } ls = [\text{冠军}, \text{败者1}, \text{败者2}, \text{叶子1}, \text{叶子2}, \text{叶子3}] $$ 2. **辅助空间**:数组$b[0..k-1]$存储各归并段当前元素值,初始化时设置$b[k] = -\infty$作为哨兵[^2]。 #### 三、初始化过程(以5路归并为例) 1. 从各归并段读取首个元素到$b[0..4]$ 2. 自底向上构建: ```python def init_loser_tree(): for i in range(k-1, -1, -1): # 从最后一个叶子节点开始 parent = (i + k) // 2 # 计算父节点位置 while parent > 0: if b[i] > b[ls[parent]]: # 新元素是败者 ls[parent], i = i, ls[parent] # 交换胜者败者 parent = parent // 2 ls[0] = i # 最终冠军 ``` #### 四、动态调整过程 当取出冠军元素$b[ls[0]]$后: 1. 从对应归并段读取新元素到$b[s]$($s$为胜者段编号) 2. **局部更新路径**: ```python def adjust(s): parent = (s + k) // 2 while parent > 0: if b[s] > b[ls[parent]]: # 新元素是败者 ls[parent], s = s, ls[parent] # 更新败者并传递胜者 parent = parent // 2 ls[0] = s # 更新冠军 ``` #### 五、关键优化特性 1. **减少冗余比较**:仅需更新从叶子到根的路径(时间复杂度$O(\log k)$) 2. **稳定性处理**:当某归并段耗尽时,将其$b[i]$设为$+\infty$,自动被淘汰出局 3. **对比胜者**:胜者需要维护所有子节点关系,而败者通过记录败者减少数据移动量[^2] #### 六、应用场景 1. 数据库大规模排序(如MySQL外部排序) 2. 搜索引擎倒排索引合并 3. 分布式计算中MapReduce的shuffle阶段
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值