# 线性回归代码matlab

看了很多的线性回归代码，感觉都没有写出算法的核心来，因此重新写了线性回归代码。下面的代码中缺少迭代退出机制，也就是 abs(ypredict - yobserver) < eps, 如果满足这个条件，就是求出了最优的theta值，就不需要继续迭代了。

还有问题，就是如何理解等高线的梯度下降？这个欢迎大家讨论。

% Exercise 2 Linear Regression

% Data is roughly based on 2000 CDC growth figures
% for boys
%
% x refers to a boy's age
% y is a boy's height in meters
%

clear all; close all; clc

m = length(y); % number of training examples

% Plot the training data
figure; % open a new figure window
plot(x, y, 'o');
ylabel('Height in meters')
xlabel('Age in years')

x = [ones(m, 1) x]; % Add a column of ones to x
theta = zeros(size(x(1,:)))'; % initialize fitting parameters
MAX_ITR = 1500;
alpha = 0.07;

for num_iterations = 1:MAX_ITR
%     This is a vectorized version of the
%     It's also fine to use the summation formula from the videos

%    grad = (1/m).* x' * ((x * theta) - y);
%
%    % Here is the actual update
%    theta = theta - alpha .* grad;
%theta

% Sequential update: The wrong way to do gradient descent
grad1 = (1/m).* x(:,1)' * ((x * theta) - y);
%      theta(1) = theta(1) + alpha*grad1;
grad2 = (1/m).* x(:,2)' * ((x * theta) - y);
%      theta(2) = theta(2) + alpha*grad2;
theta = theta - alpha .* grad;
end
% print theta to screen
theta

% Plot the linear fit
hold on; % keep previous plot visible
plot(x(:,2), x*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure

% Closed form solution for reference
exact_theta = (x' * x)\x' * y

% Predict values for age 3.5 and 7
predict1 = [1, 3.5] *theta
predict2 = [1, 7] * theta

% Calculate J matrix

% Grid over which we will calculate J
theta0_vals = linspace(-3, 3, 100);
theta1_vals = linspace(-1, 1, 100);

% initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals));

for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = (0.5/m) .* (x * t - y)' * (x * t - y);
end
end

% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');

% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 2, 15))
xlabel('\theta_0'); ylabel('\theta_1');

﻿﻿
• 本文已收录于以下专栏：

## 多元逐步回归的matlab代码

• 2010年06月24日 17:01
• 3KB
• 下载

## matlab&nbsp;多元回归分析的例子

• ProMath
• 2014年06月03日 17:15
• 1644

## matlab实现一元线性回归和多元线性回归

• u013159040
• 2016年04月18日 18:10
• 41314

## 逐步回归MATLAB程序(新)

• 2009年05月06日 21:53
• 4KB
• 下载

## 线性判别分析的人脸识别系统代码matlab程序

• 2013年04月25日 17:49
• 572KB
• 下载

## 利用梯度下降法实现线性回归的算法及matlab实现

• zyqdragon
• 2017年05月16日 21:39
• 2594

## 线性回归 matlab代码可运行

• 2016年03月12日 21:16
• 927B
• 下载

## 机器学习之一：logistic回归分析(含Matlab代码)

logistic回归是回归分析的一种，函数表达式为 y = 1/(1+exp(-x)) 在matlab中可以画出其graph：x = -10:0.1:10; y = 1./(exp(-x)+1)...
• SoaringLee_fighting
• 2016年09月18日 09:07
• 6320

## matlab实现回归分析代码

• 2012年10月21日 23:03
• 157KB
• 下载

## 线性回归代码matlab

• starzhou
• 2016年05月31日 08:01
• 508

举报原因： 您举报文章：线性回归代码matlab 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)