线性回归代码matlab

原创 2016年05月31日 08:01:41

     看了很多的线性回归代码,感觉都没有写出算法的核心来,因此重新写了线性回归代码。下面的代码中缺少迭代退出机制,也就是 abs(ypredict - yobserver) < eps, 如果满足这个条件,就是求出了最优的theta值,就不需要继续迭代了。

    还有问题,就是如何理解等高线的梯度下降?这个欢迎大家讨论。


   

代码见下:

% Exercise 2 Linear Regression

% Data is roughly based on 2000 CDC growth figures
% for boys
%
% x refers to a boy's age
% y is a boy's height in meters
%

clear all; close all; clc
x = load('ex2x.dat'); y = load('ex2y.dat');

m = length(y); % number of training examples


% Plot the training data
figure; % open a new figure window
plot(x, y, 'o');
ylabel('Height in meters')
xlabel('Age in years')

% Gradient descent
x = [ones(m, 1) x]; % Add a column of ones to x
theta = zeros(size(x(1,:)))'; % initialize fitting parameters
MAX_ITR = 1500;
alpha = 0.07;

for num_iterations = 1:MAX_ITR
%     This is a vectorized version of the
%     gradient descent update formula
%     It's also fine to use the summation formula from the videos
   
    %Here is the gradient
%    grad = (1/m).* x' * ((x * theta) - y);
%    
%    % Here is the actual update
%    theta = theta - alpha .* grad;
 %theta
   
    % Sequential update: The wrong way to do gradient descent
      grad1 = (1/m).* x(:,1)' * ((x * theta) - y);
%      theta(1) = theta(1) + alpha*grad1;
     grad2 = (1/m).* x(:,2)' * ((x * theta) - y);
%      theta(2) = theta(2) + alpha*grad2;
     grad=[grad1,grad2]';
     theta = theta - alpha .* grad;
end
% print theta to screen
theta

% Plot the linear fit
hold on; % keep previous plot visible
plot(x(:,2), x*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure

% Closed form solution for reference
% You will learn about this method in future videos
exact_theta = (x' * x)\x' * y

% Predict values for age 3.5 and 7
predict1 = [1, 3.5] *theta
predict2 = [1, 7] * theta


% Calculate J matrix

% Grid over which we will calculate J
theta0_vals = linspace(-3, 3, 100);
theta1_vals = linspace(-1, 1, 100);

% initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals));

for i = 1:length(theta0_vals)
   for j = 1:length(theta1_vals)
   t = [theta0_vals(i); theta1_vals(j)];   
   J_vals(i,j) = (0.5/m) .* (x * t - y)' * (x * t - y);
    end
end

% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');

% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 2, 15))
xlabel('\theta_0'); ylabel('\theta_1');



多元逐步回归的matlab代码

  • 2010年06月24日 17:01
  • 3KB
  • 下载

matlab&nbsp;多元回归分析的例子

本例子来自于--来自  《基础化学计量学及其应用》  -倪力军著  2011   多元回归分析的例子" TITLE="matlab 多元回归分析的例子" /> 多元回归分析的例子" TITLE=...
  • ProMath
  • ProMath
  • 2014年06月03日 17:15
  • 1644

matlab实现一元线性回归和多元线性回归

在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 ...
  • u013159040
  • u013159040
  • 2016年04月18日 18:10
  • 41314

逐步回归MATLAB程序(新)

  • 2009年05月06日 21:53
  • 4KB
  • 下载

线性判别分析的人脸识别系统代码matlab程序

  • 2013年04月25日 17:49
  • 572KB
  • 下载

利用梯度下降法实现线性回归的算法及matlab实现

利用梯度下降法实现线性回归的算法及matlab实现 1. 线性回归算法概述 线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训...
  • zyqdragon
  • zyqdragon
  • 2017年05月16日 21:39
  • 2594

线性回归 matlab代码可运行

  • 2016年03月12日 21:16
  • 927B
  • 下载

机器学习之一:logistic回归分析(含Matlab代码)

logistic回归是回归分析的一种,函数表达式为 y = 1/(1+exp(-x)) 在matlab中可以画出其graph:x = -10:0.1:10; y = 1./(exp(-x)+1)...
  • SoaringLee_fighting
  • SoaringLee_fighting
  • 2016年09月18日 09:07
  • 6320

matlab实现回归分析代码

  • 2012年10月21日 23:03
  • 157KB
  • 下载

线性回归代码matlab

看了很多的线性回归代码,感觉都没有写出算法的核心来,因此重新写了线性回归代码。下面的代码中缺少迭代退出机制,也就是 abs(ypredict - yobserver)     还有问题,就是如何理...
  • starzhou
  • starzhou
  • 2016年05月31日 08:01
  • 508
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:线性回归代码matlab
举报原因:
原因补充:

(最多只允许输入30个字)