- 博客(5)
- 收藏
- 关注
原创 matlab实现矩阵节约存储的LR(Doolittle )分解以及LDR分解
LR 分解 (Doolittle 分解)A=LRA=LRA=LR 其中,L 是单位下三角矩阵, R 是上三角矩阵设 A 有 LR 分解:比较矩阵两边元素,由第一行元素相等和第一列元素分别相等,可以得到:按照第 1 行 + 第 1 列 → 第 2 行 + 第 2 列 →…的顺序类推可以得到:对于 i=1,...,ni=1,...,ni=1,...,n,有LR 分解matlab程序function[L_matrix,R_matrix] = LR_1(A_matrix)[row_A,c.
2020-06-11 23:25:22 4570
原创 Python对数据分割并保存为新文件(函数封装)
目的利用Python对文件中的数据进行分割,按照以下方式保存:小芳的对话保存为 girl_*.txt 文件小明的对话保存为 boy_*.txt 文件第一段对话保存为 girl_1.txt 和 boy_1.txt,第二段保存为 girl_2.txt 和boy_2.txt…准备工作文件如下,文件名为test.txt- 代码1原始的写法:f = open('H:\\Python project\\test.txt') # 打开文件boy = []girl = [] ..
2020-05-20 20:14:58 1490
原创 Python递归算法的应用(斐波那契数列,汉诺塔)
Python递归算法的应用(斐波那契数列,汉诺塔)记录一下以前学过的东西(* ̄︶ ̄)什么是递归有人可能会说,从前有座山,山里有座庙,庙里有个老和尚,老和尚给小和尚讲故事,讲从前有座山,山里有座庙,庙里有个老和尚,老和尚给小和尚讲故事,讲…这大概就是递归。这样的说法是有缺陷的,应该是后来终于有一天,老和尚的故事讲完了(为什么讲完了,你懂的),这才是递归。在函数的定义中使用函数自身的方法,最后还需要输出结果。递归和循环在斐波那契数列的应用斐波那契数列:1 1 2 3 5 8 13 21
2020-05-12 16:31:13 505
原创 线性最小方差估计理论推导
线性最小方差估计理论推导定义也叫线性最小均方误差估计,顾名思义,就是使估计误差的平方和的均值达到最小。理论推导假设系统z=Hx+ϵz=Hx+\epsilonz=Hx+ϵ已知,xxx为真实值,zzz为观测到的数据,我们需要利用观测到的数据去估计真值,故被估量为xxx,假设E(x)=xˉ,E(x)=\bar{x},E(x)=xˉ,Var(x)=QxVar(x)=Q_xVar(x)=Qx...
2020-04-26 23:43:24 7250 11
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人