UVALive 3983(单调队列优化dp)

链接:点击打开链接

题意:有n个垃圾,第i个垃圾坐标为(xi,yi),重量为wi,有一个机器人,要按照编号从小到大的顺序剑气所有的垃圾兵扔进垃圾桶,垃圾桶在源点,每次总重量不能超过C,两点间距离为曼哈顿距离,求出最短的距离和

代码:

#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
int q[100005],dp[100005];
int x[100005],y[100005],w[100005];
int dis[100005],sum_dis[100005],sum_w[100005];
int get(int x){
    return dp[x]-sum_dis[x+1]+dis[x+1];
}
int main(){
    int t,n,m,i,j,head,tail;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&m,&n);
        x[0]=y[0]=0;
        sum_w[0]=sum_dis[0]=0;
        memset(dp,0,sizeof(dp));
        for(i=1;i<=n;i++){
            scanf("%d%d%d",&x[i],&y[i],&w[i]);
            dis[i]=abs(x[i])+abs(y[i]);
            sum_w[i]=sum_w[i-1]+w[i];
            sum_dis[i]=sum_dis[i-1]+abs(x[i]-x[i-1])+abs(y[i]-y[i-1]);
        }                                       //dp[i]表示到第i个的花费
        head=0,tail=1;                          //dp[i]=min(dp[j]+sum[i]-sum[j+1]+dis[i]+dis[j])
        q[0]=0;                                 //所以可以用单调队列维护dp[j]-sum_dis[j+1]+dis[j+1]
        for(i=1;i<=n;i++){
            while(head<tail&&sum_w[i]-sum_w[q[head]]>m)
            head++;
            dp[i]=get(q[head])+sum_dis[i]+dis[i];
            while(head<tail&&get(i)<=get(q[tail-1]))
            tail--;
            q[tail++]=i;
        }
        printf("%d\n",dp[n]);
        if(t>0)
        printf("\n");
    }
    return 0;
}


单调队列优化DP是一种常用的优化方法,可以将时间复杂度从 $O(n^2)$ 降低到 $O(n)$ 或者 $O(n \log n)$。以下是一道利用单调队列优化DP的典型题目: 题目描述: 给定一个长度为 $n$ 的序列 $a_i$,定义 $f(i)$ 为 $a_i$ 到 $a_n$ 中的最小值,即 $f(i) = \min\limits_{j=i}^n a_j$。现在定义 $g(i)$ 为满足 $f(j) \ge a_i$ 的最小下标 $j$,即 $g(i) = \min\{j \mid j > i, f(j) \ge a_i\}$。如果不存在这样的下标 $j$,则 $g(i) = n+1$。 现在请你计算出 $1 \le i \le n$ 的所有 $g(i)$ 的值。 输入格式: 第一行包含一个整数 $n$。 第二行包含 $n$ 个整数 $a_1,a_2,\cdots,a_n$。 输出格式: 输出 $n$ 行,第 $i$ 行输出 $g(i)$ 的值。 输入样例: 5 3 1 2 4 5 输出样例: 2 5 5 5 6 解题思路: 设 $dp(i)$ 表示 $g(i)$,那么 $dp(i)$ 与 $dp(i+1)$ 的转移关系可以表示为: $$dp(i)=\begin{cases}i+1, &\text{if}\ f(i+1)\ge a_i \\dp(i+1), &\text{else}\end{cases}$$ 这个转移方程可以使用暴力 DP 解决,时间复杂度为 $O(n^2)$。但是,我们可以使用单调队列优化 DP,将时间复杂度降为 $O(n)$。 我们定义一个单调队列 $q$,存储下标。队列 $q$ 中的元素满足: - 队列中的元素是单调递减的,即 $q_1 < q_2 < \cdots < q_k$; - 对于任意的 $i\in [1,k]$,有 $f(q_i) \ge f(q_{i+1})$。 队列 $q$ 的作用是维护一个长度为 $k$ 的区间 $[i+1,q_k]$,满足这个区间中的所有 $j$ 都满足 $f(j) < f(i+1)$。 根据定义,当我们要求 $dp(i)$ 时,只需要查找队列 $q$ 中第一个满足 $f(q_j) \ge a_i$ 的位置 $q_j$,那么 $g(i) = q_j$,如果队列 $q$ 中不存在这样的位置,则 $g(i) = n+1$。 那么如何维护单调队列 $q$ 呢?我们可以在每次 DP 的过程中,将 $i$ 加入队尾。然后判断队首元素 $q_1$ 是否满足 $f(q_1) \ge a_i$,如果满足则弹出队首元素,直到队首元素不满足条件为止。 由于每个元素最多被加入队列一次,并且最多被弹出一次,因此时间复杂度为 $O(n)$。具体实现细节可以参考下面的代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值