Maple计算积分胜出Mathematica一局(案例)

原创 2016年08月30日 18:26:15

——虽然Maple的界面用起来比较不称心,我从来不敢否认它的强大。这不,碰上一个简单定积分计算的例子:Maple可以计算出来,mathematica不支持。

问题

一个包含 向下取整 函数的定积分:

10x1xdx=?

解答

一些研究

分段函数piecewise求导数、积分原函数都不能用光滑连续函数类似的办法。通常解决较难问题的一般方法是 把待求解的陌生或难的问题,通过一些变换,转化成已经求解过的问题的形式、或者相对熟悉的容易解决的问题的形式

变换转化 有不同的类型,取决于思路、经验、视野。

我想到的是,原始问题中的定积分,实际就是求面积。

被积函数绘制出来时分段的如下形式;绘出积分对应的面积到蓝色部分:

<<MaTeX`


Plot[x Floor@(1/x)//Evaluate,
{x,0.01,1},
PlotStyle->Directive[Black,Thin],
Filling->Axis,FillingStyle->Blue,
AxesOrigin->{0,0}, AspectRatio->1,ImageSize->800,WorkingPrecision->30,
PlotPoints->10000,
FrameStyle->BlackFrame,Frame->True,

FrameTicks->{ {Table[{x,MaTeX[x,"DisplayStyle"->True,Magnification->3/2]},{x, Range[0,5]/5}],None},
{Table[{x,MaTeX[x,"DisplayStyle"->True,Magnification->3/2]},{x, 1/Range[1,7]}],None}}

]

这里写图片描述

边长为1的正方形面积减去一系列小直角三角形的面积之和即可。这些小三角形的上直角边长度实际对应于下面的值:

{112,1213,1314,,1k1k+1,}

侧直角边长为1减去下角点纵坐标。所有的下角点都在直线 y=1x上。从而容易得到蓝色部分的总面积,也就是定积分的数值:

SBLUE=1k=1+12k(k+1)2=π212

这个级数很奇妙。利用这个结果k=1+1k2=π26,可以得到:

k=1+1k(k+1)2=k=1+((1k1k+1)1(k+1)2)

=k=1+(1k1k+1)k=1+1(k+1)2=1(π261)=2π26

最终结果从而可以知道。

把图从新画一下,

Plot[{1, x Floor@(1/x) // Evaluate}, {x, 0.1^5, 1}, 
 PlotStyle -> {Red, Directive[None, Thin]}, 
 Filling -> {1 -> {{2}, {Red}}}, AxesOrigin -> {0, 0}, 
 AspectRatio -> 1, ImageSize -> 800, WorkingPrecision -> 30, 
 PlotPoints -> 10000, FrameStyle -> BlackFrame, Frame -> True, 
 FrameTicks -> {{Table[{x, 
      MaTeX[x, "DisplayStyle" -> True, Magnification -> 3/2]}, {x, 
      Range[0, 5]/5}], 
    None}, {Table[{x, 
      MaTeX[x, "DisplayStyle" -> True, Magnification -> 3/2]}, {x, 
      1/Range[1, 7]}], None}}]

这里写图片描述

这种图只能象征性表示下。从说明的角度看,似乎不是特别严谨。或者,要交代面积跟积分之间等价,太费口舌。——一直觉得这样的证明,有那么点欠缺,即无法充分、完全地“形式化”为机器能懂的方式。这难道就是人工智能跟人类智能之间根本的差距所在?

此外,看到一个变量代换 t=1x,然后把积分变化为无穷多个(k,k+1) 上积分的级数和的方法,把向下取整函数等价变换为积分区间的下限,更加简单巧妙。——Mathematica做不出这个积分实在让人扼腕叹息啊。

这篇博客真正的重点不在这个积分的求解,而在于,这种坐标轴和轴上标记的绘制小技巧(因为求积分有更简单的变量代换方法);用演示定积分计算的这种方法对应的分析过程,来演示这种绘制坐标轴刻度的技巧,看上去很恰当。

版权声明:我极少创造新知识,大部分情况下是个知识的二道贩子

用Mathematica做微积分

转自:用Mathematica做微积分 - calculus的日志 - 网易博客 http://xuxzmail.blog.163.com/blog/static/25131916201176932...
  • rookiew
  • rookiew
  • 2016年10月26日 09:20
  • 636

对三大数学软件 Mathematica 、Maple 、MATLAB 的小测试比较

今天一时兴起,突然想试试几个数学软件的功能,就测试了一个不定积分,看看哪个算得最好,最简洁。 计算: 以下计算结果我都一一验算了。   1).先在Mathematica(我用的是在线的...
  • Justme0
  • Justme0
  • 2012年03月05日 16:54
  • 18862

Android实训案例(八)——单机五子棋游戏,自定义棋盘,线条,棋子,游戏逻辑,游戏状态存储,再来一局

Android实训案例(八)——单机五子棋 阿法狗让围棋突然就被热议了,鸿洋大神也顺势出了篇五子棋单机游戏的视频,我看到了就像膜拜膜拜,就学习了一下,写篇博客梳理一下自己的思路,加深一下印象视频链...

Maple and Mathematica

  • 2009年03月18日 16:39
  • 1.21MB
  • 下载

用Mathematica 画常微分方程斜率场(积分曲线)

因为最近在看微分方程,所以就想看看万能的Mathematica能不能画出微分方程的斜率场。百度了一下和自己也查看了一下Mathematica的官方文档,但是发现好像并没有想要的结果,网上找到很多都是先...

符号积分用的Rubi软件包(Mathematica下的Package)

http://www.apmaths.uwo.ca/~arich/ Rule-based Mathematics Symbolic Integration Rules Crafted b...

Maple 18和Mathematica 9的比较[百度Maple贴吧网友转发-东京大学某教授观点]

符号计算两大商业化顶级软件; maple刚刚出了 19 (公开叫2015), mathematica也有了10.x 看了下,感觉网上有很多人视图对比不同软件,这个比较更加贴近实际情况.因此转发下;...

Maple11在积分中的应用

  • 2010年07月16日 18:12
  • 120KB
  • 下载

计算群论软件比较(GAP4、Magma2、Matlab7/Maple8、PARI/GP)

sina日志vector、matrix(2015-11-05 15:47): gap> g:=DihedralGroup(8);;repr:=IrreducibleRepresentations(g...

区块链开发(七)从某保险积分案例谈区块链应用的风险与挑战

本文以现有的真实区块链应用案例为切入点,通过分析技术架构和实际数据验证,尝试性的测试了其风险,并对未来区块链应用所面临的不同风险进行了研究和探讨,最后针对不同的风险类型,尝试性的提出了相关的建议。一、...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Maple计算积分胜出Mathematica一局(案例)
举报原因:
原因补充:

(最多只允许输入30个字)