关闭

SRM537-div2-3-PrinceXToastbook

标签: classjava
242人阅读 评论(0) 收藏 举报
分类:

题目大意:
     有人买了N本面包书,编号为0,1,...,N-1。每本面包书都含有一些知识。吃掉一本面包书有可能可以获得其中的知识。面包书之间会存在知识依赖关系,用int[] p来表示,如果面包书i依赖于面包树j,则p[i]=j,如果取值为-1则说明该书不依赖于其他书。如果吃一本面包书时已经掌握了它所依赖的书的知识,那么就可以获得该书的知识,否则不可以。现在按照随机顺序吃这些书,问最终获得的几本书的知识的期望值是多少。
    数据规模:N的取值范围为[2,50]
   

思路:
     根据题目的描述,每一本书其实都存在一条知识依赖路径,例如假设对于书i,存在以下路径:
     i1 -> i2 -> i3 -> i
那么i依赖于i3, i3依赖于i2, i2依赖于i1,i1不依赖于其他书。获取i的唯一条件是吃书的顺序必须是按着箭头的顺序吃。并且如果这条路径存在环形结构,那么i的知识必然无法获得。
     根据以上分析,我们可以对每一本书计算其知识被获取的概率。也就是说,对于书i,它的依赖路径上的所有书(包括自己)在随机排列中正好按照依赖顺序排的概率。如果依赖路径的长度为n,则该概率值为1/n! 。把所有书的概率值相加就是最终期望值。
     写代码的时候也特别注意闭环依赖的判断。本人第一遍代码中,判断i存在环形依赖的条件是依赖路径重新回到i。由于环形依赖的闭环口未必是在i上,例如 i3 -> i1 -> i2 -> i3 -> i,i3是闭环口,所以判断条件不正确。解决办法是,可以使用一个boolean数组来记录每一个节点是否已存在于依赖路径来找闭环。


Java代码:
public class PrinceXToastbook
{
      public double eat(int[] p)
      {
            double res = 0.0;
            for(int i = 0; i < p.length; ++i){
                  int len = 1;
                  int pp = p[i];
                  boolean[] visit = new boolean[p.length];
                  visit[i] = true;
                  while(pp != -1 && !visit[pp]){
                        visit[pp] = true;
                        pp = p[pp];
                        len++;
                  }
                  if(pp != -1){
                        continue;
                  }
                  double prop = 1.0;
                  for(int j = 1; j <= len; ++j){
                        prop /=j;
                  }
                  res += prop;
            }
            return res;
      }
}




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:26715次
    • 积分:743
    • 等级:
    • 排名:千里之外
    • 原创:22篇
    • 转载:35篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论