线性表的插入排序

本文详细介绍了三种插入排序算法:直接插入排序、二分插入排序及希尔排序。解释了每种算法的工作原理、时间与空间复杂度,并提供了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

插入排序算法思想:每趟一个元素,按其关键字的大小插入到他前面已经排序的子序列中,依次重复,直到插入全部元素。

插入排序算法有直接插入排序,二分插入排序,希尔排序。

- 直接插入排序

private static void insertSort(int[] keys) {
        for (int i = 1; i < keys.length; i++) {
            int temp = keys[i],j;//temp将要和前面排序好的数组比较,j是i前面的那个数
            for ( j = i-1; j >= 0 &&temp<keys[j]; j--) {
                //如果需要比较的那个比前面的那个值小,较大的那个向后移动
                keys[j+1] = keys[j];
            }
            keys[j+1] = temp;
        }
    }

temp就是将要插入前面已经排序好数组的一个值,如果这个值比较他前面那个数比较小,(如果比较大证明这个排序是成功的,开始下一个值的比较)就把前面那个值往后移动一位,然后再拿他和前面的前面那个开始比较(通过移动j角标),重复上述步骤。

  • 稳定排序
  • 时间复杂度效率在O(n)和O(n2)之间
  • 空间复杂度是O(1)占用了一个temp存储单元

- 二分插入排序

直接插入排序的每一趟,将一个元素ai插入到他前面的一个排序的子序列中,其中采用顺序查找算法寻找ai的插入位置,此时,子序列是顺序存储而且是排序好的,这两条正好符合二分查找的要求。因此用二分查找法代替插入排序中的顺序查找,就叫做二分法插入排序。

private static void insertSort2(int[] keys) {
        int i, j, temp, low, mid, high;
        for (i = 1; i < keys.length; i++) {
            low = 0;// 已排序好的数组的最小角标
            high = i - 1;// 已排序好的数组的最大角标
            temp = keys[i];// 将要插入已排序好数组的数字
            while (low <= high) {

                mid = (low + high) / 2; // 折中,取中间位置
                if (keys[mid] > temp) // 判断要插入的元素和中间元素的大小
                    high = mid - 1; // 中间元素大,最高位置取当前中间位置的前一位,重新再求中间位置
                else
                    low = mid + 1; // 中间元素小,最高位置取当前中间位置的后一位,重新再求中间位置

            }
             for(j=i-1;j>high;j--)   //将(high+1)~i的所有元素后移一位  
                 keys[j+1]=keys[j];        
             keys[high+1]=temp;        //插入元素  
        }
    }

- 希尔排序

由直接排序算法分析可知,若数据序列越接近有序,则时间效率越高,n较小时,时间效率也较高。希尔排序正是基于这两点对直接排序算法进行增进。
希尔算法算法描述如下:
- 将一个数据序列分成若干组,每组由若干相隔一段距离(称为增量)的元素组成,在一个组内采用直接插入的排序算法进行排序。
- 增量初始值通常为数据序列长度的一半,以后每趟增量递减一般,最后为1。随着增量逐渐减小,组数也减少,组内元素个数增加,增加序列接近有序。
摘自于百度百科的图片


    private static void shellSort(int[] keys) {
        for (int delta = keys.length/2; delta > 0; delta/=2) {//若干趟,控制增量每趟减半
            for (int i = delta; i < keys.length; i++) {//一趟分为若干组,每组直接插入排序
                int temp = keys[i],j;
                for (j = i-delta; j >=0&&temp< keys[j]; j-=delta) {
                    keys[j+delta] = keys[j];
                }
                keys[j+delta] = temp;//插入元素
            }
        }
    }
  • 时间复杂度的下界是n*log2n
  • 空间复杂度为O(1)
  • 由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
数据结构及算C语言版。严蔚敏版。VC6运行通过,这个是源代码CPP文件,包含顺序线性表、单链表的插入、删除、查找。包含监视哨查找,折半查找,直接插入排序,希尔排序,冒泡排序,快速排序,选择排序。里面包含超大量的注释,包括对VC6的语解释和算的解释和理解。具体效果可以看 http://download.csdn.net/detail/changechange/8236207 我上次上传的 EXE demo,带输入输出,能与用户交互。在运行的时候会把整个运算的过程都显示出来。摘录代码如下://数据结构 上机第一次 栈应用,转换进制题目。 //请用每一个cpp作为一个项目,不要把多个cpp放到同一个项目中,因为我为每个cpp都定义了main。 //这个教材上没有,只能自己补全了 #include using namespace std; //p10 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; //下面这行书上没找到,自己补的。 typedef int SElemType; //p46书上的。 #define STACK_INIT_SIZE 100 //定义最初申请的内存的大小 #define STACKINCREMENT 10 //每一次申请内存不足的时候扩展的大小 typedef struct { SElemType *base; //在栈构造之前和销毁之后,base的值为null SElemType *top; //栈顶指针 int stacksize; //当前已分配的存储空间,以元素为单位 }SqStack; //定义顺序栈别名。 //构造一个空栈S Status InitStack(SqStack &S) { // 参考之前的 List.cpp中队malloc的解释。 S.base=(SElemType *) malloc(STACK_INIT_SIZE * sizeof (SElemType)); if (!S.base) exit(OVERFLOW); // 存储分配失败 S.top = S.base; //初始时栈顶等于栈低 S.stacksize = STACK_INIT_SIZE; //初始栈容量 return OK; } //end of InitStack //插入元素e为新的栈顶元素 Status Push(SqStack &S, SElemType e) { if (S.top - S.base >= S.stacksize) // 栈满,追加存储空间 { S.base = (SElemType *) realloc(S.base, //原栈底指针 (S.stacksize + STACKINCREMENT) * sizeof (SElemType)); //新大小 if (!S.base) exit(OVERFLOW); // 存储分配失败 //调整栈顶的位置 S.top = S.base + S.stacksize; //修改栈大小为新的大小 S.stacksize += STACKINCREMENT; } //*符号为求值符。 *S.top++ = e; //先把e压入栈顶,S.top再增1指向栈顶元素e的下一个位置 return OK; } //end of Push // 若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR Status Pop(SqStack &S, SElemType &e) { if (S.top == S.base) //栈顶=栈底表示空栈,如果空栈,报错 return ERROR; e = *--S.top; //S.top先减1指向栈顶元素,再取值,赋值给e用于返回。 return OK; } //这个书上没有,自己加的 //书上没有,自己写的,用来处理每一个元素的data Status PrintEach(SElemType e){ cout<<e<<";"; return OK; } //从栈底依次对栈中每个元素调用函数visit(),主要用于输出 //关于visit的解释参考 List.cpp Status StackTraverse(SqStack &S,Status(* visit)(SElemType)){ int l = S.top-S.base; S.top=S.base; //从栈底开始输出 for(int i=0;i<l;i++) //用长度控制输出的个数 { (* visit)(*(S.top)++); } return OK; } // 若栈S为空栈,则返回TRUE,否则返回FALSE Status StackEmpty(SqStack &S) { //栈顶指针S.top是否等于栈底指针S.base是判断栈是否为空的条件 if (S.top == S.base) return TRUE; else return FALSE; } //p48 进行进制转换 //对于输入的任意一个非负十进制整数,打印输出与其等值的八进制数 void conversion() // 算3.1 { SqStack S; //声明顺序栈S unsigned int N; //unsigned 表示无符号,unsigned int 从0开始,非负整数 SElemType e; //栈元素e InitStack(S); //构造空栈S cout<=0)"<<endl; scanf("%d",&N); //获取用户的输入,%d 是对数据的格式化。 &N 表示对变量 N 引用。 while (N) //只要n不等于0就循环。从n为用户输入的十进制数开始,一直到n等于0为止 { Push(S, N % 8); //n除以8的余数(8进制的低位)入栈 //先压入的余数是八进制的低位,后压入的余数是八进制的高位 N = N / 8; //令n等于n整除以8的商,进入下轮循环 } //我自己加的,先输出一遍栈内的内容。 cout<<"从底到顶输出栈内的内容,用于调试:"; StackTraverse(S,PrintEach); cout<<endl; //循环结束时,n等于0 while (!StackEmpty(S)) //只要栈S没pop空就不断循环,直到pop出栈底元素栈S为空为止 { Pop(S, e); //pop出栈顶元素且赋值给e进行返回 //先pop出的是八进制的高位,后pop出的是八进制的低位 printf("%d", e); //依次输出e } //循环结束时,栈S为空 cout<<endl; } int main() { for(int i=0;i<4;++i) conversion(); return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值