何为“地理围栏”

何为“地理围栏”

地理围栏(Geo-fencing)是LBS 的一种新应用,就是用一个虚拟的栅栏围出

一个虚拟地理边界。当手机进入、离开某个特定地理区域,或在该区域内活动时,
手机可以接收自动通知和警告。有了地理围栏技术,位置社交网站就可以帮助用

户在进入某一地区时自动登记。


地理围栏与普通的LBS 的区别:

1.地理区域是被网格化的。网格化的标准是根据一个地理区域内的业务和商业

聚类的,而不是纯粹的经纬度和城市地图的匹配。
2.实际上地理围栏的各个围栏的区隔是一个个的应用需求群地图。主要的商业
需求聚集在特定区域,形成的一个聚合信息服务区域。
3.终端自己活着在网络帮助下能够识别所处的围栏
4.用户的围栏信息彼此之间能够共享,也能够与应用开发商分享。
5.双向、互动是关键
6.商业群落是地理围栏的核心,类似城市的商圈。
7.价值整合、场景整合、信息流资金流整合是关键。

实用性介绍(举例Square 公司的Pay with Square )

      Pay with Square 的简介:说起Square 你可能会想起那个插在iPhone 上用来收款的小玩意,不过别忘了Square 还推出过一款名叫Card Case 的支付软件,这款软件可以让你无需动手(不同于一些无线支付,它也不需要NFC 功能哦)就完成支付,目前已经有超过70,000

家商户支持这一功能。就在今天,Card Case 迎来了一次大变身,Square 决定将
这款软件正式更名为Pay with Square,同时对UI 也做了全新的设计。在Pay with
Square 中,界面变的更为简洁,Square 会按照距离和相关性显示商户列表。同时
软件中还加入了搜索功能,可以输入商户名称查找,当然用户也可以在地图上对
商户进行浏览。另外,通过短信、email 及Twitter 用户可以和朋友轻松的分享商
户信息。不过在这次更新中最让人兴奋的是原本iOS 独有的「自动生成帐单」功
能(凭藉iOS 的「地理围栏」功能,用户在进入商户附近一定范围时,商户的Square
程序就会自动显示用户的姓名、帐户等信息,当用户消费后只需完成身份确认,
Square 程序就会自动完成交易,随后用户手机端的Square 程序会收到相应的提示
和收据)。

引入“地理围栏”技术的探讨:

地理围栏的应用优势:

1.用户“零操作”——顾客只需入店进行身份确认,便可完成支付

2.集成社交网站——连接twitter 账户和微博,可查看朋友评论
3.附近商家目录——商家可添加多种信息,顾客可留有商家“卡片”
4.商户评论功能——顾客可查看附近最常光顾、最喜欢的店家
5.商户准确性营销——将用户的喜好保存并分析,将潜在用户推荐给对应的
商户,并且可以利用此技术在客户入店时将优惠、折扣、新产品信息推送给客户,
提高客户的购买度。
实现“地理围栏”技术的前提:
1.技术上的要求,即需要引入类似Square 公司移植的ios 地理围栏api,以及相
关的配套app
2.商圈的规模,即商户的引入。上述举例中的Square 公司,现在在美国一共有
约80000 个商户加入其商圈中。

国内正在做类似Square 传统产品的公司:

1.盒子支付:与银联合作,所有支持银联的银行卡、信用卡都可以使用,同时支持余额查询、信用卡还款、手机充值、公共事业缴费等支付服务;

2.乐刷:与财付通合作,支持向现有第三方支付账户充值,充值话费、游戏币
和Q 币;
3.快钱快刷:由第三方支付公司快钱推出,主要将目标客户锁定于企业,尤其
重视在保险收单业务上的应用;
4.钱袋宝:专门从事移动支付业务,与金融机构和多家银行有紧密合作,可支
持近端NFC 支付;
5.钱方支付:与Square 的读卡器不同,前方支付带有可刷卡的密码输入键盘,
外形类似移动POS 机。
以上几家是现今在移动支付行业做得比较大的公司,但是其读卡器至今未大
规模商用,可见类似Square 公司的模式,不能完全照搬到中国。

导致这种情况可能的原因有:

1.国内信用体系并不完善;

2.信用卡支付多数需要输入密码;
3.国内交易费率通常较低;
4.安全性问题难以解决。
“地理围栏”带给我们的思考
截止2012 年4 月,中国国内还未出现完全类似Square 平台模式的应用和服务,
较多的则是类似读卡器和Square Reader 的服务和应用。

对于square 模仿者来说,国内的竞争者众多,“盒子大战”已经开始,而类似
Pay with Square 这种引入“地理围栏”可以抛弃传统意义上硬件的支付方式,是否
能够引起国内消费者的亲睐呢?
<think>好的,用户现在想了解栈的概念及其与递归和迭代的关系,还问到了栈的数据结构定义以及它在递归和迭代中的作用。首先,我需要回顾之前关于递归和迭代的讨论,并结合用户提供的引用内容来组织回答。 用户之前的问题是关于递归和迭代的区别,现在转向栈的相关内容,说明他们可能在学习算法或数据结构,想深入理解这些结构之间的联系。用户提供的引用中提到了递归依赖系统调用栈,迭代使用循环结构,栈溢出风险等,这些都需要在回答中体现。 首先,栈的定义。栈是一种LIFO的数据结构,基本操作是push和pop。需要简明扼要地解释,可能引用用户提供的引用[3]中的内容,比如操作系统用栈保存递归信息。数据结构定义部分,可以举例子,比如数组或链表实现,但用户可能更关注逻辑结构而非具体实现。 接下来,栈在递归中的作用。这里要强调递归函数调用时的栈帧,每次调用压栈,返回时弹栈。引用[3]提到终止条件的重要性,否则栈溢出,这点要强调。可能引用用户给的例子,比如阶乘递归的栈使用情况,以及如何导致栈溢出。 然后是栈在迭代中的作用。用户提供的引用[4]提到迭代使用循环代码,变量同时保存结果,这里可能需要解释显式栈的使用,比如用栈来模拟递归过程,如DFS的迭代实现。引用[3]中的遍历二叉树用迭代方式,需要栈来辅助,可以举例说明。 需要比较递归和迭代中栈的不同,递归用系统栈,而迭代用用户定义的栈,这样在控制内存方面更灵活。引用[2]提到递归是函数自调用,而迭代是代码段循环,这里可以联系起来。 可能还需要提到栈溢出的风险,递归的缺点,以及如何用迭代加栈来避免,比如用户引用[4]中的内容。同时,引用[5]中的阶乘递归例子可以用来说明栈的增长过程。 用户的问题还包括栈的数据结构定义,所以要确保这部分清晰,可能分点列出栈的特性,操作,然后自然过渡到在递归和迭代中的应用。 最后,生成相关问题时要围绕栈、递归优化、转换方法等,帮助用户进一步学习。确保引用标记正确,参考用户提供的引用[1]-[5],但不需要全部引用,选择相关的部分即可。 需要检查是否有遗漏点,比如栈在迭代中的显式管理,比如回溯算法中的使用,或者表达式求值等例子,但可能超出当前问题范围。保持聚焦在递归和迭代的关系上。 总结回答结构:定义栈,分点说明在递归和迭代中的作用,比较两者的差异,应用场景,最后相关问题。</think>### 栈的概念及其与递归、迭代的关系 --- #### 一、栈的数据结构定义 **栈(Stack)** 是一种遵循 **后进先出(LIFO)** 原则的线性数据结构,核心操作包括: 1. **入栈(Push)**:将元素添加到栈顶。 2. **出栈(Pop)**:移除并返回栈顶元素。 3. **查看栈顶(Peek)**:返回栈顶元素但不移除。 **实现方式**: - **数组**:通过固定大小的连续内存实现。 - **链表**:通过动态节点链接实现(更灵活)。 --- #### 二、栈在递归中的作用 1. **递归的系统调用栈** - 递归函数每次调用自身时,系统会为其分配一个 **栈帧(Stack Frame)**,保存函数的局部变量、参数和返回地址。 - **示例**:计算阶乘 $n!$ 的递归函数 `factorial(n)` 调用时,栈中依次压入 `factorial(n)`, `factorial(n-1)`, ..., `factorial(0)` 的栈帧[^3]。 - **风险**:若递归深度过大(如计算 `factorial(10000)`),会导致 **栈溢出(Stack Overflow)**[^2]。 2. **递归终止条件与栈的关系** - 终止条件决定了递归何时停止压栈并开始逐层返回。例如: ```python def factorial(n): if n == 0: # 终止条件 return 1 return n * factorial(n-1) ``` 若缺少终止条件,栈会无限增长直至溢出[^3]。 --- #### 三、栈在迭代中的作用 1. **显式管理栈结构** - 迭代中可通过 **自定义栈** 模拟递归行为,解决需要回溯的问题(如深度优先搜索、二叉树遍历)。 - **示例**:二叉树前序遍历的迭代实现: ```python def preorder(root): stack = [root] while stack: node = stack.pop() if node: print(node.val) stack.append(node.right) # 右子节点先入栈(后处理) stack.append(node.left) # 左子节点后入栈(先处理) ``` 通过栈显式记录待访问节点[^3][^4]。 2. **迭代与递归的栈对比** | **维度** | **递归(系统栈)** | **迭代(显式栈)** | |----------------|-------------------------------|-------------------------------| | **控制权** | 由系统自动管理 | 由程序员手动管理 | | **灵活性** | 受限(依赖语言栈大小) | 灵活(可动态调整栈容量) | | **适用场景** | 代码简洁的分治问题 | 需避免栈溢出或需精细控制的问题 | --- #### 四、栈在算法中的典型应用 1. **递归相关算法** - 分治算法(如快速排序)、树/图的深度优先遍历(DFS)、回溯算法(如八皇后问题)[^1][^3]。 2. **迭代相关算法** - 深度优先遍历的迭代实现、表达式求值(逆波兰表示法)、括号匹配校验[^4][^5]。 --- #### 五、栈与递归、迭代的关系总结 - **递归是隐式使用系统栈的迭代**,而 **迭代是显式使用自定义栈的递归**。 - **优化方向**: - 递归可通过 **尾递归优化** 减少栈深度(需语言支持,如Scheme、Scala)[^2]。 - 迭代通过自定义栈避免系统栈的限制,适合处理大规模数据。 --- **相关问题** 1. 如何用栈实现递归算法的迭代版本? 2. 尾递归优化如何减少栈空间占用? 3. 哪些场景下必须使用显式栈替代递归? 4. 栈溢出有哪些常见原因及解决方法? --- : 递归与迭代的选择需结合问题结构和性能需求。 [^2]: 递归的栈深度与时间复杂度需平衡[^3]。 [^3]: 显式栈提供更灵活的内存控制。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值