GBDT算法

本文探讨了GBDT算法在多分类问题中的应用,并将其与SVM等算法进行了对比。重点介绍了GBDT的特点、优缺点及其实现细节,还推荐了一个开源项目供读者进一步研究。
从网上看到一个关于该算法的小结,说的不错
转载自:http://hi.baidu.com/hehehehello/blog/item/b2d09752cbda41140df3e35e
.html

1)为了建树时计算均方差,GBDT是对每个分类单独生成一个对连续值划分的决策树森林。所以GBDT对于多分类问题可能不像我们想象的那么适合。同时,GBDT里的决策树与平时我们说的多分类决策树(如C4.5)是不一样的。GBDT里面的决策树并不是用最大熵来作为划分依据的(其实它是找实例含量最大的叶子节点下手,随机找几个feature,然后挑均方差最小的feature&value 做分支切分,这样逐步生成的)

 

2)决策树类算法相对于SVM/Bayes/Regression类算法的优点在于,它能够允许不同特征组合拥有不同的判别式,不像SVM只能有一个唯一的全局判别式。所以它们尤其适合于不同特征组合会产生不同效应的情形(比如《机器学习》课本里那个看天气打网球的例子)。实际应用中,若不管怎么改核函数SVM都无法获得较好的training结果,那就该考虑用决策树试一下了。

 

3)决策树类算法的缺点在于,它非常的武断。就像现代考试制度一样,59.9和60.1对于决策树来说可以完全是两码事。而SVM就人性化多了。个人认为这也是为什么决策树要引入gradientboosting的原因,决策树森林很大程度上是通过多个树的加和来弱化了这种武断的条件函数的缺点。至于大家异口同声的过拟合的问题,是可以通过限定叶子节点最小的实例数目来缓解的,个人不认为是大问题。而且过拟合问题不是决策树独有的,神经网络也过拟合呀,cross-validation不就是用来解决这个问题的吗。

 

4) GBDT的源码推荐elf开源项目:http://elf-project.sourceforge.net/

里面有很多很精彩的C++应用。

 

5)GBDT一般要生成几百颗树之后才能有较好效果,所以不像C4.5一样,很难直观的从决策树形态看到哪些feature起了决定性作用。不过已经有人在展现方面做了很赞的工作:http://vis.berkeley.edu/courses/cs294-10-fa07/wiki/index.php/FP-Jerry_Ye_and_Jimmy_Chen


### GBDT算法原理 GBDT,全称为Gradient Boosting Decision Tree(梯度提升决策树),是一种高效的集成学习方法。该方法通过迭代地添加决策树来逐步减少预测误差,在多种任务中展现出色性能,特别是在处理结构化数据的分类和回归问题上[^1]。 #### 基础理论 GBDT的核心在于梯度提升算法,这是一种能够将多个弱学习器(通常为决策树)组合成一个强学习器的技术。具体来说,每一轮训练都会基于前一轮模型产生的残差构建新的决策树,以此不断改进整体模型的表现。这种机制使得GBDT能够在保持高精度的同时具备良好的泛化能力[^2]。 对于二元分类问题,GBDT采用CART回归树作为基学习器,并利用对数似然损失函数指导模型的学习过程。当目标变量取值为1或-1时,对应的负梯度计算方式会直接影响到后续回归树的拟合方向与程度[^3]。 ```python from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingClassifier import numpy as np # 创建模拟数据集 X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, random_state=42) # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) # 初始化并训练GBDT分类器 gbdt_clf = GradientBoostingClassifier() gbdt_clf.fit(X_train, y_train) # 预测新样本类别 predictions = gbdt_clf.predict(X_test) print(f'Predicted classes: {np.unique(predictions)}') ``` 此代码片段展示了如何使用Python中的`sklearn`库快速搭建一个简单的GBDT分类模型,并完成基本的数据预处理、模型训练及预测操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值