N皇后高效算法实现

原创 2006年06月11日 13:30:00

// N Queens Problem  试探-回溯算法,递归实现
// sum用来记录皇后放置成功的不同布局数;upperlim用来标记所有列都已经放置好了皇后
#include<stdio.h>
#include <stdlib.h>
#include<time.h>
long sum = 0, upperlim = 1,half=0;
void test(long row, long ld, long rd)   // 试探算法从最右边的列开始。
{          // row,ld,rd进行“或”运算,求得所有可以放置皇后的列,对应位为0,
   if (row != upperlim)  
   {       // 然后再取反后“与”上全1的数,来求得当前所有可以放置皇后的位置,对应列改为1。
           // 也就是求取当前哪些列可以放置皇后。          
  long pos = upperlim & ~(row | ld | rd);
  while (pos)  // 0 -- 皇后没有地方可放,回溯。
  {   // 拷贝pos最右边为1的bit,其余bit置0。
            // 也就是取得可以放皇后的最右边的列。  
   long p = pos & -pos;  // 将pos最右边为1的bit清零。也就是
    // 为获取下一次的最右可用列使用做准备,程序将来会回溯到这个位置继续试探
   pos -= p;    // row + p,将当前列置1,表示记录这次皇后放置的列
                         // (ld + p) << 1,标记当前皇后左边相邻的列不允许下一个皇后放置
                         // (ld + p) >> 1,标记当前皇后右边相邻的列不允许下一个皇后放置。
                         // 此处的移位操作实际上是记录对角线上的限制,只是因为问题都化归
                         // 到一行网格上来解决,所以表示为列的限制就可以了。显然,随着移位
                         // 在每次选择列之前进行,原来N×N网格中某个已放置的皇后针对其
                         // 对角线上产生的限制都被记录下来了。 
   if(row==0&&p>half)
    continue;
   else
    test(row + p, (ld + p) << 1, (rd + p) >> 1);   
  }
   }
   else   
   {           
  sum++;     // row的所有位都为1,即找到了一个成功的布局,回溯
   }
}
int main(int argc, char *argv[])
{
   time_t tm;
   int n;
   printf("Please input queen's number n(0<n<32):");
   scanf("%d",&n);
   if (argc != 1)
   n = atoi(argv[1]);
   tm = time(0);
   // 因为整型数的限制,最大只能32位,如果想处理N大于32的皇后问题,需要
   // 用bitset数据结构进行存储。
   if ((n < 1) || (n > 32))                 
   {
  printf("Can calulate 1 between 32/n");
  exit(-1);
   }
 if(n==1)
   {
    sum=1;
    printf("All %ld counts. /nRunning time is %d seconds. /n", sum, (int) (time(0) - tm));
    return 0; 
   }
   printf("Working out %d queen problem,please wait.../n", n);  
   half=(n-1)/2;     // 采用对称式算法计算,增加全局变量half
   half=upperlim<<half;  
   upperlim = (upperlim << n) - 1; // N个皇后只需N位存储,N列中某列有皇后则对应bit置1
   test(0, 0, 0);
   printf("All %ld counts. /nRunning time is %d seconds. /n", sum*2, (int) (time(0) - tm));
   return 0;
}

从社区中发现此高效算法的实现,有个问题是对于1这种特殊情况没有考虑完善,现在稍加改动保存起来。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

深入N皇后问题的一个高效算法的详解

深入N皇后问题的一个高效算法的详解 author: liuzhiwei N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行...

深入N皇后问题的两个最高效算法的详解

N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。 一、 求解N皇后问题是算法中回溯法应用的一个经典案例 回...

N皇后问题的两个最高效的算法

N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。 一、 求解N皇后问题是算法中回溯法应用的一个经典案例  ...

N皇后问题的两个最高效的算法

转载自:N皇后问题的两个最高效的算法 N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。 一、 ...

N皇后问题的两个最高效的算法

N皇后问题的两个最高效的算法 分类: C/C++ 数据结构 算法数据结构存储system任务网格         N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每...

N皇后问题的两个最高效的算法

http://blog.csdn.net/hackbuteer1/article/details/6657109         N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每...

N皇后问题的两个最高效的算法

N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。 本文阐述快速解决N皇后问题的两个方法

中国象棋程序的设计与实现(六)--N皇后问题的算法设计与实现(源码+注释+截图)

八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)