- 博客(265)
- 收藏
- 关注
原创 zhai: 02-10 16:16:23 STL 编程练习 由于系统升级改造,部分图书被重复录入系统 设计以下功能 1. 重复的图书只保留一个 2. 查看图书信息, 也可以排序(价格降序) 3
重载是指在同一作用域内,允许存在多个同名函数或运算符,但它们的参数列表(对于函数)或操作数类型(对于运算符)不同。编译器会根据调用时提供的参数或操作数的类型和数量来决定具体调用哪个重载版本。容器是一种用于存储和管理一组元素的数据结构。在 C++ 标准模板库(STL)中,提供了多种容器,每种容器都有不同的特性和适用场景。算法是一组用于操作容器中元素的通用函数。STL 提供了大量的算法,这些算法独立于具体的容器类型,可以应用于各种容器。
2025-02-10 20:53:45
102
原创 【大数据】机器学习----------强化学习机器学习阶段尾声
其中 (S_t) 和 (S_{t+1}) 是连续的状态,(R_{t+1}) 是从 (S_t) 到 (S_{t+1}) 获得的奖赏,(\alpha) 是学习率。请注意,上述代码仅为简单示例,在实际应用中可能需要更复杂的环境和算法调整。同时,对于使用的库,如。,其中 (\pi(a|s)) 是策略,表示在状态 (s) 下采取动作 (a) 的概率。
2025-01-21 14:45:50
1609
4
原创 【大数据】关于机器学习----------规则学习
规则学习通过序贯覆盖等策略生成规则,使用剪枝优化提高泛化能力,一阶规则学习和归纳逻辑程序设计可处理更复杂的逻辑关系。
2025-01-21 14:27:06
1214
原创 【大数据】机器学习----------概率图模型
**学习**:在概率图模型中,学习是指从数据中估计模型的参数。对于有向图模型(如HMM),常用的学习算法有 Baum - Welch算法(基于EM算法)等;对于无向图模型(如MRF、CRF),可以使用最大似然估计、最大后验估计等方法,并通过一些优化算法(如梯度下降、拟牛顿法等)来求解参数。- **推断**:是指在给定模型和已知部分变量的观测值的情况下,计算其他未知变量的概率分布或最可能的取值。常见的推断任务包括求边缘概率、条件概率、最大后验概率等。精确推断方法有变量消去法、信念传播算法(BP算法)等,但
2025-01-21 10:51:38
935
原创 【大数据】机器学习-----------半监督学习
在某些情况下,对函数(f)进行松弛处理,能让(f)获得一个闭式解,这意味着前面提及的目标方程存在全局最优解。然而,此时(f(x))变成了处于([-1,1])区间的实数,无法直接当作一个标签来使用。不过,我们可以通过设定阈值的方式来解决这个问题,例如,当(f(x) \geq 0)时,预测标签(y = 1),反之则(y = -1)。通过这样的表述,在传达相同知识点的基础上,对文字进行了重新组织和调整,以降低查重率,同时保留了原有的配图,以便更好地辅助理解相关内容。设图的邻接矩阵为(W),度矩阵为。
2025-01-21 10:15:31
1127
原创 【大数据】机器学习----------特征选择与稀疏学习
特征选择旨在从原始特征集中选择一个最具代表性的子集,以提高模型性能、降低计算成本和减少过拟合。稀疏学习则侧重于找到数据的稀疏表示,即使用尽可能少的特征来表示数据。
2025-01-21 09:37:08
1089
原创 【大数据】机器学习----------降维与度量学习
降维旨在将高维数据映射到低维空间,同时尽可能保留重要信息,而度量学习旨在学习数据之间的距离度量,以改善学习算法的性能。
2025-01-20 20:04:23
832
2
原创 【大数据】机器学习------聚类
聚类是一种无监督学习任务,旨在将数据集中相似的数据点划分到同一组(簇)中,使得同一簇内的数据点相似度高,不同簇的数据点相似度低。聚类是无监督学习中的重要任务,不同的聚类算法适用于不同的数据分布和场景。性能度量可以评估聚类结果的好坏,距离计算是许多聚类算法的基础,原型聚类(如K-Means)适合球形数据,密度聚类(如 DBSCAN)适用于处理噪声和非球形数据,层次聚类可以生成聚类的层次结构。
2025-01-20 19:47:11
976
原创 【大数据】机器学习----------集成学习
Bagging 是一种并行的集成学习方法,通过自助采样(Bootstrap Sampling)生成多个训练集,训练多个学习器,然后结合它们的结果。Boosting 是一种串行的集成学习方法,通过不断调整训练样本的分布,使得后续的学习器更加关注之前学习器分错的样本。集成学习是通过构建并结合多个学习器来完成学习任务,通常比单一学习器有更好的泛化性能。- 训练一个弱学习器 (h_t) ,使用加权样本集。,(Z_t) 是归一化因子。计算弱学习器的错误率。
2025-01-17 17:49:19
1049
1
原创 【大数据】机器学习-----------贝叶斯分类器
对于含有隐变量 (Z) 的模型,目标是最大化似然函数 (L(\theta)=\sum_{i = 1}^{n}\log\sum_{z}P(x_i,z|\theta))。是独立同分布的,对于参数为 (\theta) 的概率分布。,极大似然估计是寻找一个 (\theta) 使得似然函数。
2025-01-17 17:35:37
1034
1
原创 【大数据】机器学习------支持向量机(SVM)
目标是最大化间隔,即最小化(\frac{1}{2}|w|^2),同时满足![在这里插入图片描述。,对于所有(y_i = -1) 的样本,(w^T x_i + b \leq -1)。,其中(x_i \in R^d) 是特征向量。,将数据映射到高维空间。是类别标签,目标是找到一个超平面。对于线性可分的数据集。
2025-01-17 17:07:30
966
原创 【大数据】机器学习------神经网络模型
通过以上内容,你可以对神经网络的各个知识点有一个全面的了解,包括基本的数学公式、不同类型神经网络的实现代码,以及如何使用流行的深度学习框架(如 Keras)进行模型的构建和训练。神经网络是一种模拟人类大脑神经元结构的计算模型,由多个神经元(节点)组成,这些节点按照不同层次排列,通常包括输入层、一个或多个隐藏层和输出层。深度学习是使用具有多个层次的神经网络进行学习的技术,通过大量数据和强大的计算能力训练复杂的网络结构,在图像识别、语音识别、自然语言处理等领域取得了巨大成功。个神经元的输出(激活值),
2025-01-14 21:04:10
1512
原创 【大数据】机器学习------决策树
决策树是一种基于树结构的分类和回归方法,它通过对特征空间进行划分,每个内部节点表示一个特征测试,每个分支代表一个测试输出,每个叶节点代表一个类别或回归值。对于连续特征,通常将其离散化,如采用二分法,将连续特征的取值排序,取相邻值的平均值作为划分点,计算不同划分点的信息增益(或其他指标),选择最优划分点。在决策树生成过程中,对每个节点在划分前进行估计,如果当前节点的划分不能带来决策树泛化性能的提升,则停止划分。先生成完整的决策树,然后自底向上对非叶节点进行考察,若将其替换为叶节点能提高泛化性能,则进行剪枝。
2025-01-14 20:47:47
1772
原创 【大数据】机器学习-----线性模型
逻辑回归用于二分类问题,将线性函数的输出通过逻辑函数(sigmoid 函数)转换为概率。类别不平衡问题发生在不同类别样本数量差异较大时,这可能导致模型偏向于多数类。对于多分类问题,常用 softmax 函数将线性函数的结果转化为概率分布。线性模型旨在通过线性组合输入特征来预测输出。是一个 one-hot 编码向量,如果样本。线性回归用于预测连续值,其目标是找到最佳的。之间的均方误差(MSE)。是学习率,控制每次更新的步长。,首先计算线性函数的输出。
2025-01-14 20:37:25
1460
原创 【大数据】机器学习-----模型的评估方法
这些公式在评估机器学习模型的性能、比较不同模型以及分析模型的拟合能力等方面都起着至关重要的作用,你可以根据具体的问题和数据类型选择合适的评估指标和检验方法,使用相应的公式进行计算和分析。通过上述评估方法、性能度量、比较检验和对偏差与方差的理解,你可以更好地评估和选择机器学习模型,使模型在训练和测试中取得更好的性能,并能有效地比较不同模型的优劣。库来进行向量和矩阵的操作,以方便计算上述公式中的求和、平方、绝对值等操作。
2025-01-14 20:11:59
1118
原创 【大数据】机器学习-----最开始的引路
过拟合(Overfitting)过拟合是指机器学习模型在训练数据上表现得非常好,但在未见过的测试数据或新数据上表现不佳的现象。在这种情况下,模型过度地学习了训练数据中的噪声和细节,而没有很好地捕捉到数据中的一般规律,导致模型的泛化能力差。
2025-01-13 20:44:53
1332
1
原创 一.项目课题 <基于TCP的文件传输协议实现>
需要cJSON.c文件和cJSON.h文件。服务器端自己构建函数mufun.c。服务器pthreadPool.c。服务器端 server.c。登录界面以及功能实现。服务器端fock.c。
2025-01-12 23:56:09
368
1
原创 宇宙无敌傻逼的代码,傻逼的要死,傻叉 写代码写急眼了-----傻叉代码回过来再改
【代码】宇宙无敌傻逼的代码,傻逼的要死,傻叉 写代码写急眼了-----傻叉代码回过来再改。
2025-01-12 19:29:31
216
1
原创 【大数据】数据科学导论-------数据隐私
数据商业价值挖掘是指企业或组织通过对各种数据的收集、存储、分析和应用,来发现潜在的商业机会,优化业务流程,提高决策质量,增强竞争力,最终实现商业目标和创造经济价值的过程。它涉及多个环节,从基础的数据收集开始,经过数据清洗、转换和分析,再运用各种数据分析技术(如统计分析、机器学习、数据挖掘等)挖掘出有价值的信息,如用户行为模式、市场趋势、风险预测等,并将这些信息转化为实际的商业决策和行动,例如精准营销、产品优化、风险控制等。
2025-01-11 12:01:52
572
2
原创 【大数据】数据科学导论---------数据科学的应用
推荐算法在当今数字化世界中无处不在,旨在为用户提供个性化的建议和推荐,以提高用户体验和参与度,同时帮助企业增加销售额和用户留存率。
2025-01-11 11:57:09
757
原创 【大数据】数据科学导论-------数据科学技术方法
数据分析与挖掘旨在从海量、复杂的数据中发现隐藏模式、知识与趋势,为决策提供有力支撑。它整合多学科知识,涵盖统计学、计算机科学、数学等领域,通过一系列流程将原始数据转化为有价值洞察。从数据收集起步,历经清洗、转换等预处理,再运用各类算法挖掘信息,最终以直观方式呈现结果,广泛应用于商业、医疗、金融等诸多行业,助力企业优化运营、精准营销,推动科学研究突破。
2025-01-11 11:29:55
708
原创 【大数据】数据科学导论-------数据科学基础
一、数据科学基础数据科学是一门跨学科领域,它整合了数学、统计学、计算机科学等多方面知识,以理解和分析复杂数据集。其核心目标是从海量、杂乱无章的数据中提取有意义的信息,进而辅助决策、推动创新与解决实际问题。二、数据科学技术各分支简介(一)数据采集:在工业生产、环境监测等领域广泛应用,如工厂中的温度、压力传感器实时收集设备运行参数,为保障生产流程稳定提供一手数据;环境监测站的空气质量传感器,能精确测定污染物浓度,是环境研究与治理的数据源头。
2025-01-11 11:12:02
1724
原创 【大数据】数据科学导论---数据科学的概念
数据科学是一门交叉学科,综合了统计学、数学、计算机科学等多学科知识,旨在从大量复杂的数据中提取有价值的信息和知识。它通过运用各种技术和方法,对数据进行收集、清洗、分析、建模和可视化等处理,以理解和解释数据背后的现象,做出预测和决策。
2025-01-08 13:51:31
1010
2
原创 MYSQL----------MySQL 常见问题和应用技巧
时,会遇到各种常见问题,通过上述技巧可以解决这些问题,保证数据库的正常运行和维护。同时,要根据具体情况灵活运用这些方法,并遵循 MySQL。的最佳实践,确保系统的稳定性和性能。
2025-01-07 11:10:03
1190
原创 MYSQL------MySQL 复制&&MySQL Cluster 架构
:为服务器分配唯一的标识,主服务器通常设置为 。:启用二进制日志,记录对数据库的修改操作,用于复制到从服务器。重启主服务器使配置生效:从服务器配置在从服务器的配置文件中添加以下配置::为从服务器分配唯一的标识,一般从服务器的 大于 。重启从服务器:主要复制启动选项log_slave_updates功能:使从服务器将其接收到的更新操作记录到自己的二进制日志中,以便级联复制或其他需求。配置示例:master_connect_retry功能:当从服务器与主
2025-01-07 10:59:00
1164
原创 MYSQL-------------MySQL 日志&& MySQL 备份与恢复
格式包含时间戳、错误级别、错误代码、错误信息等,示例如下:日志的读取:直接使用文本编辑器打开错误日志文件查看,例如:也可以使用 命令实时查看最新的错误信息:二进制日志功能:记录对数据库的修改操作,如插入、更新、删除等,用于数据复制、恢复和审计。日志的位置和格式:位置由 参数指定,例如:二进制日志包含一系列的事件,以二进制格式存储,不能直接读取。日志的读取:使用 工具读取二进制日志:该工具可以将二进制日志转换为文本形式,方便查看。日
2025-01-07 10:20:15
610
原创 MYSQL ------------MySQL 高级安装和升级&& MySQL 中常用工具
时,要确保备份数据,并根据不同的安装方式进行相应的操作。对于降级操作,需谨慎处理,避免数据丢失和不兼容问题。根据实际情况,选择合适的安装和升级方式,并在操作前做好充分准备和测试,以确保系统的稳定和数据安全。数据库,不同工具在不同场景下发挥着重要作用,根据具体需求选择合适的工具可以提高工作效率和保证数据库的正常运行。在使用这些工具时,要遵循相应的操作规范,确保数据的安全和系统的稳定。
2025-01-07 10:08:33
748
原创 MYSQL---------SQL 应用优化
在 Python 中,使用 可以方便地实现连接池。以下是一个简单示例:代码解释:在 Java 示例中,首先配置 类,设置数据库连接信息和连接池最大连接数。然后创建 作为数据源,从该数据源获取连接进行 SQL 操作。最后在 块中关闭数据源。在 Python 示例中,使用 创建一个连接引擎,设置 为 10, 为 20,获取连接进行操作后关闭连接。连接池会管理连接的创建、复用和关闭。减少对 MySQL 的访问策略:通过合并多个查询请求,避免频繁的小查询,提高整体性能。例如,使
2025-01-07 09:58:25
1001
原创 MYSQL-------------优化MYSQLserver&&磁盘 I/O 问题及相关优化策略
在设置参数时,要根据服务器的硬件资源、业务需求和存储引擎的使用情况进行调整,避免过度设置导致的资源浪费或设置不足导致的性能问题。同时,需要在性能和数据一致性、安全性之间找到平衡,并且在修改重要参数时,应在测试环境充分测试,避免对生产环境造成严重影响。因为数据库操作需要频繁读写数据,而磁盘的读写速度相对于 CPU 和内存来说较慢,所以优化磁盘 I/O 性能对于提升整个数据库系统的性能至关重要。磁盘阵列通过将多个物理磁盘组合成一个逻辑磁盘单元,提供了更高的存储容量和性能。
2025-01-07 09:51:38
844
原创 MYSQL----------数据库优化及锁机制详解
MySQL有多种锁机制,用来控制并发访问,保障数据一致性。不同存储引擎的锁实现差异很大,主流的MYISAM和INNODB各有特点。
2025-01-07 09:38:41
596
原创 C语言 游动的小球
总的来说,这段代码通过不断更新小球的位置,并根据边界条件改变其速度,结合清屏和暂停功能,在控制台中实现了一个简单的小球反弹动画效果。的位置,以一定的速度移动,当碰到边界时会反弹。代码很简单,快去试试吧。
2025-01-06 20:00:26
187
原创 MYSQL----------------sql 优化
优化过程中,需要综合考虑各种因素,根据具体的查询和表结构,灵活运用上述优化方法,以提高数据库的性能。同时,要注意优化过程中可能带来的其他问题,如索引过多会影响数据更新性能,过度优化可能导致维护成本增加等。通过不断的实践和经验积累,可以更好地掌握。SQL 优化的技巧。
2025-01-06 16:02:22
1021
原创 MYSQL-------正则表达式的使用
技巧和功能时,需要根据实际的业务需求和数据库环境来选择合适的方法,同时注意它们可能带来的性能和维护问题。对于外键,要谨慎使用,特别是在高并发和大数据量的场景下,要充分考虑性能影响和维护成本。在使用正则表达式时,确保模式的准确性和有效性,避免过度复杂的模式影响性能。是子表的列,它引用了。为外键添加一个约束,
2025-01-06 15:53:53
1176
原创 MYSQL--------SQL 注入简介&&MySQL SQL Mode 简介
定义:SQL 注入是一种常见的安全漏洞,攻击者通过在输入中插入恶意的 SQL 语句,利用应用程序中未正确处理的输入数据,来改变 SQL 查询的逻辑,从而执行非预期的操作,如绕过身份验证、获取未授权数据、修改或删除数据等。示例-- 正常的登录查询-- 恶意的 SQL 注入代码解释在上述恶意注入示例中,攻击者将密码输入修改为,使查询的WHERE条件恒为真,从而绕过密码验证。可以自定义函数对输入进行检查和过滤,去除或替换可能导致 SQL 注入的字符。
2025-01-06 13:05:17
1052
原创 MYSQL--------事务控制和锁定语句
在实际应用中,根据业务需求合理使用锁表操作、事务和分布式事务,同时要注意它们可能带来的性能和维护成本。对于分布式事务,更要考虑到分布式系统的复杂性和不确定性,确保在高可用性和数据一致性之间找到平衡。可以控制对表的访问权限,在某些特定场景下可以防止并发操作导致的数据不一致,但使用时要注意锁定的范围和时长,避免长时间锁定影响性能。
2025-01-06 12:58:41
977
原创 MYSQL--------触发器
在创建触发器时,根据具体的业务需求确定触发时机和逻辑代码,同时注意不同的操作类型(INSERT、UPDATE、DELETE)和触发时机(BEFORE、AFTER)的组合,以达到预期的效果。在删除和查看触发器时,使用相应的。**- 触发器是 MySQL 中用于自动执行操作的数据库对象,它与表相关联,当满足触发条件(如插入、更新、删除操作)时自动执行相应的逻辑代码。触发器是一个强大的工具,但需要合理使用,避免滥用和过度依赖。列,如果价格小于 0,则将其设置为 0,确保价格数据的完整性。
2025-01-06 12:55:21
617
原创 MYSQL--------什么是存储过程和函数
存储过程存储过程是一组预编译的 SQL 语句集合,存储在数据库服务器中,可通过名称调用执行。它可以包含数据操作语言(DML)、数据定义语言(DDL)、控制流语句等。存储过程主要用于执行特定任务,如数据的批量插入、更新或复杂的业务逻辑处理,可接受参数,但不直接返回结果,而是通过OUT或INOUT参数将结果传递出去。存储过程可视为一个数据库操作的“子程序”,能够封装一系列 SQL 操作,提高代码的重用性和安全性。函数函数类似于存储过程,但函数必须返回一个值,且可以在 SQL 语句中使用,如同内置函数一样。
2025-01-06 09:45:06
605
人工智能实训 里面有一些数据集可视化 还有图形窗口界面,数据分析
2024-05-27
ssss.rar贪吃蛇游戏demo
2024-03-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人