动态规划:求最大子段和

原创 2015年11月21日 13:08:31

动态规划:求最大子段和

1、题目



2、方法



3、实现代码

//动态规划法求最大子段和 
// by 孙琨SealSun at UCAS 
// 2015.11.20 

#include<iostream>
using namespace std;
#define MAX 256

// 算法 
void MaxSum(int n,int *a){
	int sum = 0; // 最大子段和 
	int b = 0; // 局部子段和 
	int start = 0; // 最大子段起始处 
	int end = 0; // 最大子段终止处 
	for(int i=1; i<=n; i++){ // 一直相加,直到和不为正数,当前值取代 
		if(b>0){  
			b += a[i]; 
		//	end = i;
		}
		else{
			b = a[i];
			start = i; 
		}
		
		if(b>sum){
			sum = b;
			end = i;
		}
	}
	
	cout << "最大子段和为:"<<endl;
	cout << sum <<endl;
	cout << "最大子段为:" <<endl; 
	for(int i=start; i<=end; i++){
		cout << a[i] << " ";
	}
	cout << endl;
} 

// 测试 
int main(){
	int n; // 输入数的总个数 
	int a[MAX]={0}; // 具体存储的数值 
	cout << "请输入数的总个数:"<<endl;
	cin >> n;
	cout << "请依次输入每一个数:" <<endl;
	for(int i=1; i<=n; i++){
		cin >> a[i];
	}
	MaxSum(n,a);
	return 0;
} 


4、测试结果截图


版权声明:本文为博主原创文章,如需转载,请注明地址:http://blog.csdn.net/sunkun2013 举报

相关文章推荐

动态规划求最大子段和

目录目录 思路 例题 对动态规划的理解 参考思路(1)一般来说,数组a[n]的子序列的最直观描述是a[i]~a[j],1≤i≤j≤n。而为了更清晰地找到动态规划中的递推关系,可以认为原始数组的最大子序...

动态规划求最大子段和

一、动态规划思想:动态规划通过多阶段决策解决问题,每一次的决策结果序列都必须进行存储。因此,可以说:“动态规划是高效率、高消费”的算法。动态规划就是分支算法的升级版,它的实质是:分支算法+解决子问题冗...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

动态规划:求最大子段和

动态规划:求最大子段和 1、题目 2、方法 3、实现代码 //动态规划法求最大子段和 // by 孙琨SealSun at UCAS // 2015.11.20 #include using n...

动态规划——最大子段和

最大字段和这是动态规划的经典问题,上一讲我们讲了一个简单的动态规划问题,这个最大子段和也不难,我们主要通过这几个简单的问题来了解一下动态规划。还有最大子段和用分治法也能做,等到日后我们在讲。 ...

动态规划——最大子段和

#include int MaxSum(int n, int *a, int *besti, int *bestj) { int sum = 0, i,j,k, thissum; for(i ...

动态规划-最大子段和

一、最大子段和     问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时定义...

动态规划——最大子段和(hdu1003,1231)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 题目描述:寻找一个序列中和值最大的子段序列,例如6,-1,5,4,-7,其最大子段和为 14(6...

动态规划 - 最大子段和

动态规划 - 最大子段和问题描述 给定 n 个整数组成的序列 a[1],a[2],a[3],……,a[n] ,求该序列如 a[i],a[i+1],a[i+2],……,a[j] 的连续子段和的最大...

动态规划,最大子段和

最大子段和:给定由n个整数组成的序列a1,a2,...an,求该序列子段和的最大值! 例如:(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2),最大子段和为11+(-4)...

动态规划 - 最大子段和

给定一个数组A[A0,A1,A2,...,An],求数组中 连续子段之和 的最大值。 (1)最简单的算法:穷举法 计算所有的连续子段之和,得出最大值 // 穷举法:计算所有的子序列和 // ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)