动态规划:最大m子段和

大家好,我是连人。本次接上期 最大子段和及最大子矩阵和问题继续讲最大m子段和问题。

在最大m子段和问题中,要求取m个互不相交子段,和为最大值。最大m子段和问题是最大子段和在子段个数上的推广,最大子段和问题是m=1的特殊情况。

在这个问题中,我们使用一个矩阵b[ i ][ j ],他表示的意义是在前 j 项中被分为 i 段的最大 i 子段和。

在这里插入图片描述

首先,既然是前 j 项需要分为 i 段,所以当 i == j 的时候,数组中的每个数自为一段,此时的值就是前 j 项的和。所以对角线上的值就是前 j 项加起来。

剩下的情况如下图:
在这里插入图片描述

若要确定蓝色块的值,则在黄色块中寻找一个最大值,与红色块比较,取大者加在自身上。

若是黄色块,当前值则是一个新的子段的开始。若是红色块,当前值是和前一个值一起组合成一个子段的。

若要找分为4段的值,则在第4行找最大值即可。

因为所有值是通过左上方或左方而来,所以为了节省时间和空间,可以将b矩阵按如下简化:
在这里插入图片描述

代码如下:

def max_sum_3(m, n, a):
    if n < m or m < 1:
        return
    b = []
    for i in range(0, m + 1):
        b.append([])
        for j in range(0, n + 1):
            b[i].append(0)
    for i in range(1, m + 1):
        for j in range(i, n - m + i):
            if j > i:
                b[i][j] = b[i][j-1] + a[j]
                for k in range(i - 1, j):
                    if b[i][j] < b[i-1][k] + a[j]:
                        b[i][j] = b[i-1][k] + a[j]
            else:
                b[i][j] = b[i-1][j-1] + a[j]
    sum = 0
    for j in range(m, n + 1):
        if sum < b[m][j]:
            sum = b[m][j]
    return sum

跟最大子段和问题类似,在最大子段和问题中,只用到了b[j]和b[j-1],因此只使用一个b来节约空间。同样地,在最大m子段和问题中,只使用了j行和j-1行,因此使用两个数组即可。

更改后的代码如下:

def max_sum_4(m, n, a):
    if n < m or m < 1:
        return
    b = []
    c = []
    for i in range(0, n - m + 1):
        b.append(0)
        c.append(0)
    for i in range(0, m):
        b[0] = c[0] + a[i]
        for j in range(1, n - m + 1):
            b[j] = b[j - 1] + a[i + j]
            for k in range(0, j + 1):
                if b[j] < c[k] + a[i + j]:
                    b[j] = c[k] + a[i + j]
        for j in range(0, n - m + 1):
            c[j] = b[j]
    sum = 0
    for i in range(0, n - m + 1):
        if sum < b[i]:
            sum = b[i]
    return sum

转载注明出处。

  • 14
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
最长公共子序列问题和最大子段和问题都是动态规划问题。 1. 最长公共子序列问题 最长公共子序列问题(Longest Common Subsequence, LCS)是指给定两个序列X和Y,找出它们的最长公共子序列。 动态规划算法实现: 设X={x1,x2,…,xm}和Y={y1,y2,…,yn},令c[i][j]表示X的前i个字符和Y的前j个字符的LCS长度,b[i][j]记录c[i][j]是由哪一个子问题的解得到的。 则有以下的状态转移方程: c[i][j] = 0, i=0 或 j=0 c[i][j] = c[i-1][j-1]+1, i,j>0 且 xi=yj c[i][j] = max(c[i-1][j], c[i][j-1]), i,j>0 且 xi≠yj 实现代码如下: ```python def LCS(X, Y): m, n = len(X), len(Y) c = [[0]*(n+1) for i in range(m+1)] b = [[0]*(n+1) for i in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if X[i-1] == Y[j-1]: c[i][j] = c[i-1][j-1] + 1 b[i][j] = '↖' elif c[i-1][j] >= c[i][j-1]: c[i][j] = c[i-1][j] b[i][j] = '↑' else: c[i][j] = c[i][j-1] b[i][j] = '←' return c, b def printLCS(b, X, i, j): if i == 0 or j == 0: return if b[i][j] == '↖': printLCS(b, X, i-1, j-1) print(X[i-1], end='') elif b[i][j] == '↑': printLCS(b, X, i-1, j) else: printLCS(b, X, i, j-1) ``` 效率分析: 设X和Y的长度分别为m和n,时间复杂度为O(mn),空间复杂度也为O(mn)。 2. 最大子段和问题 最大子段和问题(Maximum Subarray Sum)是指在一个数列中找到一个连续的子序列,使得该子序列的和最大动态规划算法实现: 设a[1..n]为输入的数组,sum[i]表示以a[i]为结尾的最大子段和,则有以下的状态转移方程: sum[1] = a[1] sum[i] = max(sum[i-1]+a[i], a[i]), i>1 实现代码如下: ```python def maxSubarray(a): n = len(a) dp = [0] * n dp[0] = a[0] for i in range(1, n): dp[i] = max(dp[i-1] + a[i], a[i]) return max(dp) ``` 效率分析: 设a的长度为n,时间复杂度为O(n),空间复杂度为O(n)。 综上所述,最长公共子序列问题和最大子段和问题的动态规划算法都是时间复杂度为O(n^2),空间复杂度为O(n^2)的算法,但是两者的状态转移方程和实现方式不同。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值