linux使用msgpack及测试

本文对比了MsgPack与Protobuf的性能,特别是在手机游戏等轻量化应用中的表现。通过实际测试,MsgPack展现了高效的打包解包速度,适用于多语言环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在网络程序的开发中,免不了会涉及到服务器与客户端之间的协议交互,由于客户端与服务器端的平台的差异性(有可能是windows,android,linux等等),以及网络字节序等问题,通信包一般会做序列化与反序列化的处理,也就是通常说的打包解包工作。google的protobuf是一个很棒的东西,它不仅提供了多平台的支持,而且直接支持从配置文件生成代码。但是这么强大的功能,意味着它的代码量以及编译生成的库文件等等都不会小,如果相对于手机游戏一两M的安装包来说,这个显然有点太重量级了(ps:查了一下protobuf2.4.1的jar的包大小有400k左右),而且在手机游戏客户端与服务器的交互过程中,很多时候基本的打包解包功能就足够了。

今天经同事推荐,查阅了一下msgpack相关的资料。msgpack提供快速的打包解包功能,官网上给出的图号称比protobuf快4倍,可以说相当高效了。最大的好处在与msgpack支持多语言,服务器端可以用C++,android客户端可以用java,能满足实际需求。

在实际安装msgpack的过程中,碰到了一点小问题,因为开发机器是32位机器,i686的,所以安装完后跑一个简单的sample时,c++编译报错,错误的表现为链接时报错:undefined reference to `__sync_sub_and_fetch_4',后来参考了下面的博客,在configure时指定CFLAGS="-march=i686"解决,注意要make clean先。

msgpack官网地址:http://msgpack.org/

安装过程中参考的博客地址:http://blog.csdn.net/xiarendeniao/article/details/6801338



====================================================================================

====================================================================================

补上近期简单的测试结果

测试机器,cpu 4核 Dual-Core AMD Opteron(tm) Processor 2212,单核2GHz,1024KB cache, 内存4G。


1. 简单包测试

struct ProtoHead
{
    uint16_t uCmd;      // 命令字
    uint16_t uBodyLen;  // 包体长度(打包之后的字符串长度)
    uint32_t uSeq;      //消息的序列号,唯一标识一个请求
    uint32_t uCrcVal;           // 对包体的crc32校验值(如果校验不正确,服务器会断开连接)
};

struct ProtoBody
{
    int num;
    std::string str;
    std::vector<uint64_t> uinlst;
    MSGPACK_DEFINE(num, str, uinlst);
};

测试中省略了包头本地字节序与网络字节序之间的转化,只有包体做msgpack打包处理.

vector数组中元素数量为16个,每次循环做一次打包与解包,并验证前后数据是否一致,得到的测试结果如下:

总耗时(s)

循环次数

平均每次耗时(ms)

0.004691

100

0.04691

0.044219

1000

0.044219

0.435725

10000

0.043573

4.473818

100000

0.044738

总结:基本每次耗时0.045ms左右,每秒可以打包解包22k次,速度很理想。


2. 复杂包测试(vector嵌套)

struct test_node
{
    std::string str;
    std::vector<uint32_t> idlst;

    test_node()
    {
        str = "it's a test node";

        for (int i = 0; i++; i < 10)
        {
            idlst.push_back(i);
        }
    }

    bool operator == (const test_node& node) const
    {
        if (node.str != str)
        {
            return false;
        }

        if (node.idlst.size() != idlst.size())
        {
            return false;
        }

        for (int i = 0; i < idlst.size(); i++)
		{
            if (idlst[i] != node.idlst[i])
            {
                return false;
            }
		}
        return true;
    }

    MSGPACK_DEFINE(str, idlst);
};

struct ProtoBody
{
    int num;
    std::string str;
    std::vector<uint64_t> uinlst;
    std::vector<test_node> nodelst;

    MSGPACK_DEFINE(num, str, uinlst, nodelst);
};
每个nodelst中插入16个node,每个node中的idlst插入16个id,同1中的测试方法,得到测试结果如下:

总耗时(s)

循环次数

平均每次耗时(ms)

0.025401

100

0.25401

0.248396

1000

0.248396

2.533385

10000

0.253339

25.823562

100000

0.258236

基本上每次打包解包一次要耗时0.25ms,每秒估算可以做4k次打包解包,速度还是不错的。


3. 加上crc校验

如果每个循环中,打包过程加上crc的计算,解包过程中加上crc校验,得到测试结果如下:

总耗时(s)

循环次数

平均每次耗时(ms)

0.025900

100

0.25900

0.260424

1000

0.260424

2.649585

10000

0.264959

26.855452

100000

0.268555

基本上每次打包解包耗时0.26ms左右,与没有crc差别不大;




<think>嗯,用户想了解RV1103相机的调试。首先,我需要确定RV1103是什么芯片。RV1103是瑞芯微推出的低功耗视觉处理器,常用于智能摄像头、物联网设备。调试相机模块可能涉及硬件连接、软件配置、驱动调试等方面。 用户可能是工程师或开发者,遇到相机模块无法正常工作的问题,需要指导调试步骤。深层需求可能是解决图像不显示、图像质量差或性能优化等问题。 首先,硬件检查是关键。确保电源稳定,接口正确连接,比如MIPI CSI-2接口是否正确。时钟和数据线是否匹配,避免信号干扰。可能需要检查硬件设计是否符合规格,比如电压、阻抗匹配。 然后是软件部分,需要配置设备树(DTS),正确描述相机模块的参数,比如时钟频率、分辨率、I2C地址。驱动是否正常加载,内核日志(dmesg)是否有错误信息。可能需要调试V4L2框架,确保应用层能正确获取图像数据。 图像质量调试,比如调整曝光、白平衡、色彩校正。使用工具如v4l2-ctl来设置参数,或通过ISP(图像信号处理器)进行调优。还可能涉及固件更新,确保传感器和主控的兼容性。 此外,调试工具和方法,如使用示波器检查信号完整性,逻辑分析仪抓取MIPI数据。软件层面,可能需要修改内核驱动,调试寄存器配置,或与传感器厂商合作获取支持。 需要注意RV1103的具体文档和SDK,不同厂商的传感器配置可能不同。用户可能需要查阅瑞芯微的官方资料,参考示例配置,逐步排查问题。如果有具体问题,比如某个错误日志,可以更针对性地解决。</think>RV1103 是瑞芯微(Rockchip)推出的一款低功耗视觉处理芯片,主要用于智能摄像头、IoT视觉终端等场景。其相机调试涉及硬件接口、驱动配置、图像处理等多个环节,以下是关键调试步骤的概述: --- ### **一、硬件调试基础** 1. **接口确认** - **MIPI CSI-2**:检查摄像头模组与RV1103的MIPI接口(CLK+/CLK-, DATA+/DATA-)物理连接,确保阻抗匹配(差分线100Ω)。 - **I2C控制**:确认摄像头I2C地址与驱动配置一致(通常为0x3C或0x3D)。 - **电源与时钟**:测量摄像头供电(如1.8V/2.8V)是否稳定,MCLK(主时钟)频率是否匹配(例如24MHz)。 2. **信号完整性** - 使用示波器检查MIPI信号的眼图质量,避免因走线过长或干扰导致数据丢包。 - 验证同步信号(VSYNC/HSYNC)是否正常触发。 --- ### **二、软件驱动配置** 1. **设备树(DTS)配置** - 在Linux内核设备树中定义摄像头节点,例如: ```dts &csi_dphy { status = "okay"; }; &mipi_csi2 { status = "okay"; ports { port@0 { mipi_csi2_input: endpoint { remote-endpoint = <&ov5647_out>; data-lanes = <1 2>; // 根据实际摄像头MIPI通道数配置 }; }; }; }; &i2c1 { status = "okay"; ov5647: camera@36 { compatible = "ovti,ov5647"; reg = <0x36>; clocks = <&cru CLK_MIPICSI_OUT>; pwdn-gpios = <&gpio1 12 GPIO_ACTIVE_LOW>; // 其他参数:分辨率、帧率等 }; }; ``` 2. **驱动加载验证** - 通过`dmesg | grep csi`检查内核日志,确认CSI和摄像头驱动是否成功加载。 - 使用`v4l2-ctl --list-devices`查看摄像头设备是否注册。 --- ### **三、图像调试工具** 1. **V4L2工具链** - 抓图测试:`v4l2-ctl --device /dev/video0 --stream-mmap --stream-to=test.raw` - 格式转换:通过`ffmpeg`将RAW数据转为可查看的格式(如YUV420P)。 2. **ISP调优** - 通过瑞芯微提供的`rkisp_3A_server`工具调整曝光、白平衡、降噪等参数。 - 修改`/etc/iq_files/`下的IQ配置文件(如`ov5647.xml`)优化图像效果。 --- ### **四、常见问题排查** 1. **无图像输出** - 检查供电和MCLK是否正常。 - 确认I2C通信成功:`i2cdetect -y 1`扫描设备地址。 - 内核日志中是否有`mipi_dphy`或`v4l2`相关报错。 2. **图像花屏/撕裂** - 调整MIPI时序参数(如`lane_rate`、`csi_dphy_clk`)。 - 检查DDR带宽是否不足(降低分辨率或帧率测试)。 --- ### **五、参考资料** 1. 瑞芯微官方文档:《RV1103 Linux SDK开发指南》 2. 摄像头Sensor Datasheet(如OV5647、GC2053等) 3. Linux V4L2框架文档:https://www.kernel.org/doc/html/latest/userspace-api/media/index.html 如果需要进一步分析具体问题(如寄存器配置、图像效果调优),建议提供硬件设计原理图或内核日志错误片段。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值