这一年、、C++

          其实想想这一年,糊里糊涂就过来了,还没来得及后悔一样,想想自己开始满怀的热情,那种感觉有点淡忘,其实一直很喜欢自己学的专业学的代码学的C++,只是唯一的就是对自己失去了信心

          记得刚开始学的时候总有很多的耐心,总相信自己可以坚持的下来,从没想过自己会被挫败,信心满满的时候觉得自己什么都可以,遇到过去的坎儿了就觉得自己无所是处。

           有两个月没有光顾博客了,从一开始写不出来很少发博文,到最后写出的那几个也懒得发,到现在都不知道自己会不会以后连写代码的信心都没有?

           生活中各种杂乱的事让原本就对渐渐变得困难的学习渐渐失去了耐心,虽然也很后悔自己就这么任由自己颓废下去,但是有时候就是忍不住,大学,真的太任由自我了,太放纵,若不是自己真的管得住自己的,那些放纵的人,就像自己渐渐地变成的那个样子,这真的是自己想的嘛?

            不知道丢下的这些该怎么补回来,马上就要学习java了,因为C++这样儿,会不会让自己受到影响,就算下定决心,会不会也像这一年这样让自己那些无聊的接口蒙混过关,有太多的不确定,可是还是忍不住,无论如何,首先不能放弃,如果这一年的教训还不鞥让自己下定决心,拿自己真的败了,曾经自己对自己那么信誓旦旦。。。。。。做回安静的自己,这时候才会认真的让自己不被这些困难打败。

           自己曾经跟随大流也追求过排名,追求过访问量,可现在想想这都不是根本,根本的是你能不能把学习当成是自己的一部分,不用被动的通过老师的作业与博文来逼着自己,这个很有可能变成一种反动力,适合自己的才是最好的,如果逼迫自己行不通,那何不先好好静下来想想,思考哪里做错了,然后,安安静静的决定,看看自己的决心有多大,看看自己会不会承认自己真的做不到。

           就算这一年做错了不少,错过了很多,可是不经历也不会懂,所以不全后悔,最后,继续·········

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值