hadoop自带wordcount代码详解

原创 2016年06月01日 05:25:36

hadoop中自带wordcount代码详解

wordcount代码详解
package cn.chinahadoop;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

     /** 
     * MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情) 
     * Mapper接口: 
     * WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。 
     * Reporter 则可用于报告整个应用的运行进度,本例中未使用。  
     *  
     */  
  public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{

      /** 
       * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口, 
       * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。 
       */ 
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();//Text 实现了BinaryComparable类可以作为key值


    /** 
     * Mapper接口中的map方法: 
     * void map(K1 key, V1 value, OutputCollector<K2,V2> output, Reporter reporter) 
     * 映射一个单个的输入k/v对到一个中间的k/v对 
     * 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。 
     * OutputCollector接口:收集Mapper和Reducer输出的<k,v>对。 
     * OutputCollector接口的collect(k, v)方法:增加一个(k,v)对到output 
     */  

    public void map(Object key, Text value, Context context) throws IOException, 
    InterruptedException {

        /**
         * 原始数据:
         * c++ java hello
            world java hello
            you me too
            map阶段,数据如下形式作为map的输入值:key为偏移量
            0  c++ java hello
            16 world java hello
            34 you me too

         */

         /**
          * 以下解析键值对
         * 解析后以键值对格式形成输出数据
         * 格式如下:前者是键排好序的,后者数字是值
         * c++ 1
         * java 1
         * hello 1
         * world 1
         * java 1
         * hello 1
         * you 1
         * me 1
         * too 1
         * 这些数据作为reduce的输出数据
         */
      StringTokenizer itr = new StringTokenizer(value.toString());//得到什么值
      //System.out.println("value什么东西 : "+value.toString());
      //System.out.println("key什么东西 : "+key.toString());

      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());

        context.write(word, one);
      }
    }
  }

  public static class IntSumReducer extends Reducer<Text,IntWritable,IntWritable,Text> {
    private IntWritable result = new IntWritable();
    /**
     * reduce过程是对输入数据解析形成如下格式数据:
     * (c++ [1])
     * (java [1,1])
     * (hello [1,1])
     * (world [1])
     * (you [1])
     * (me [1])
     * (you [1])
     * 供接下来的实现的reduce程序分析数据数据
     * 
     */
    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, 
    InterruptedException {
      int sum = 0;
      /**
       * 自己的实现的reduce方法分析输入数据
       * 形成数据格式如下并存储
       *     c++    1
       *    hello   2
       *    java    2
       *    me      1
       *    too     1
       *    world   1
       *    you     1
       *    
       */
      for (IntWritable val : values) {
        sum += val.get();
      }

      result.set(sum);
      context.write(result, key);
    }
  }

  public static class IntSumCombiner//Combiner
            extends Reducer<Text,IntWritable,Text,IntWritable>{
      private IntWritable result = new IntWritable();
      public void reduce(Text key,Iterable<IntWritable> values,
              Context context
              )throws IOException,InterruptedException{
          int sum=0;
          for (IntWritable val : values){
              sum += val.get();
          }
          result.set(sum);
          context.write(key,result);
      }
  }
  public static void main(String[] args) throws Exception {

      /** 
       * JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作 
       * 构造方法:JobConf()、JobConf(Class exampleClass)、JobConf(Configuration conf)等 
       */  

    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    //这里需要配置参数即输入和输出的HDFS的文件路径
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
   // JobConf conf1 = new JobConf(WordCount.class);
    Job job = new Job(conf, "word count");//Job(Configuration conf, String jobName) 设置job名称和
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class); //为job设置Mapper类 
    job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类  
    job.setReducerClass(IntSumReducer.class); //为job设置Reduce类 

    job.setMapOutputKeyClass(Text.class);  
    job.setMapOutputValueClass(IntWritable.class); 

    job.setOutputKeyClass(IntWritable.class);        //设置输出key的类型
    job.setOutputValueClass(Text.class);//  设置输出value的类型

    job.setOutputFormatClass(SequenceFileOutputFormat.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类   设置输入路径

    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类  设置输出路径
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Hadoop入门经典:WordCount

以下程序在hadoop1.2.1上测试成功。 本例先将源代码呈现,然后详细说明执行步骤,最后对源代码及执行过程进行分析。 一、源代码 package org.jediael.hadoopdemo.wo...

Hadoop示例程序WordCount详解及实例

部分参考:http://www.javaeye.com/topic/606962package com.felix; import java.io.IOException; import java...

servlet的执行原理与生命周期

一、先从servlet容器说起:大家最为熟悉的servlet容器就是Tomcat ,Servlet 容器是如何管理 Servlet?         先看一下tomcat的容器模型: 从上图可以看...

Servlet——Cookie

本文介绍了Servlet中的Cookie技术,介绍了Cookie的概念以及用法,介绍了如何在Servlet中使用Cookie。并简单介绍了Cookie一个小应用

Ubuntu16.04 上运行 Hadoop2.7.3 自带example wordCount摸索记录

首先最最重要的写在最前面,也是我觉得个人踩得最深的坑,刚接触hadoop的人,缺少的认识: hdfs的理解:它是一个文件系统,跟linux的文件系统是类似的结构,拥有类似的语法,大概就是你在linux...

eclipse运行hadoop wordcount example

eclipse运行hadoop wordcount example

Spark pipe + PHP 的 wordcount 实现

<?php $in = fopen('php://stdin','r'); while(!feof($in)) { $temp = explode(" ",fgets($in)); for (...

MapReduce源码分析之Eclipse中的代码如何提交给JobTracker

我们在Eclipse中的代码是如何提交给JobTracker运行的呢,benwen
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)