GraphRAG
文章平均质量分 96
马超的博客
Stay Hungry, Stay Foolish
展开
-
GraphRAG深入解析
GraphRAG 建立在微软之前使用图机器学习的研究和工具的基础上。GraphRAG 流程的基本步骤包含索引和查询两部分。此时,我们有一个实体和关系的图、实体的社区层次结构以及 node2vec 嵌入。现在,我们希望基于社区数据并为每个社区生成报告。这让我们可以从多个粒度点对图表有一个高层次的了解。例如,如果社区 A 是顶级社区,我们将获得有关整个图表的报告。如果社区是较低级别的,我们将获得有关本地集群的报告。生成社区报告在此步骤中,我们使用 LLM 生成每个社区的摘要。原创 2024-07-25 20:48:32 · 1375 阅读 · 0 评论 -
使用Neo4j和LangChain实现“Local to Global”的GraphRAG
在这篇博文中,我们将深入探讨微软的“From Local to Global GraphRAG[6]”的文章以及具体实现。我们将主要介绍知识图谱的构建和摘要部分,基于 GraphRAG 的检索应用在下一篇博客文章会具体介绍。微软的研究人员同时提供了Microsoft GraphRAG[7]的项目页面。原创 2024-07-13 17:52:20 · 1555 阅读 · 0 评论