螺旋队列
一道题:
21 22 ....
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
看清以上数字排列的规律,设 1 点的坐标是 (0,0),x 方向向右为正,y 方向向下为正。例如,7 的坐标为 (-1,-1),2 的坐标为 (0,1),3 的坐标为 (1,1)。编程实现输入任意一点坐标 (x,y),输出所对应的数字。[Finland 某著名通信设备公司 2005 年面试题]
规律是什么?规律真的一看就能看出来,问题就在于如何利用它。很明显这个队列是顺时针螺旋向外扩展的,我们可以把它看成一层一层往外延伸。第 0 层规定为中间的那个 1,第 1 层为 2 到 9,第 2 层为 10 到 25,……好像看出一点名堂来了?注意到 1、9、25、……不就是平方数吗?而且是连续奇数(1、3、5、……)的平方数。这些数还跟层数相关,推算一下就可以知道第 t 层之内一共有 (2t-1)^2 个数,因而第 t 层会从 [(2t-1)^2] + 1 开始继续往外螺旋。给定坐标 (x,y),如何知道该点处于第几层?so easy,层数 t = max(|x|,|y|)。
知道了层数,接下来就好办多了,这时我们就知道所求的那点一定在第 t 层这个圈上,顺着往下数就是了。要注意的就是螺旋队列数值增长方向和坐标轴正方向并不一定相同。我们可以分成四种情况——上、下、左、右——或者——东、南、西、北,分别处于四条边上来分析。
东|右:x == t,队列增长方向和 y 轴一致,正东方向(y = 0)数值为 (2t-1)^2 + t,所以 v = (2t-1)^2 + t + y
南|下:y == t,队列增长方向和 x 轴相反,正南方向(x = 0)数值为 (2t-1)^2 + 3t,所以 v = (2t-1)^2 + 3t - x
西|左:x == -t,队列增长方向和 y 轴相反,正西方向(y = 0)数值为 (2t-1)^2 + 5t,所以 v = (2t-1)^2 + 5t - y
北|上:y == -t,队列增长方向和 x 轴一致,正北方向(x = 0)数值为 (2t-1)^2 + 7t,所以 v = (2t-1)^2 + 7t + x
其实还有一点很重要,不然会有大 bug。其它三条边都还好,但是在东边(右边)那条线上,队列增加不完全符合公式!注意到东北角(右上角)是本层的最后一个数,再往下却是本层的第一个数,那当然不满足东线公式啊。怎么办?好办。反正其它三条都满足不是吗,我们把东线的判断放在最后(其实只需要放在北线之后就可以),这样一来,东北角那点始终会被认为是北线上的点啦~
int foo(int x, int y)
{
int t = max(abs(x), abs(y));
int v = (2*t - 1) * (2*t - 1);
if (y == -t) {
v += 7*t + x;
} else if (x == -t) {
v += 5*t - y;
} else if (y == t) {
v += 3*t - x;
} else {
v += t + y;
}
return v;
}