IOS学习笔记4—Objective C—创建单例

单例模式是在实际项目开发中用到比较多的一种设计模式,设计原理是整个系统只产生一个对象实例,通过一个统一的方法对外提供这个实例给外部使用。

在Java中,构造单例一般将类的构造函数声明为private类型,然后通过一个静态方法对外提供实例对象,那么,在OC中,如何实现单例的,请看下面完整代码。


@implementation Car

//声明一个静态对象引用并赋为nil

static Car *sharedInstance= nil;


//声明类方法(+为类方法,也就是Java中的静态方法)

+(Car *) sharedInstance

{

     if(!sharedInstance)

     {

          sharedInstance = [[self alloc] init];

     }

     return sharedInstance;

}

@end


//覆盖allocWithZone:方法可以防止任何类创建第二个实例。使用synchronized()可以防止多个线程同时执行该段代码(线程锁)


+(id)allocWithZone:(NSZone *) zone

{

     @synchronized(self)

     {

          if(sharedInstance == nil)

          {

               sharedInstance = [super allocWithZone:zone];

               return sharedInstance;

          }

     }

     return sharedInstance;

}


好了,到这里,OC中的单例就创建完成了,使用的话,直接类名调用类方法即可。在后续的OC和IOS学习中,我会尽量用结合Java学OC,结合Android学IOS的思路来进行分析和学习,这样有一个对比,有一个相互的概念划分。

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值