http://acm.hdu.edu.cn/showproblem.php?pid=3461
纯题意解释,没有思想, 样例深度解释
第一行 N, M, 接下来有M行,N代表有几个字母组成, M代表有多少个可操作区间
对样例1的解释:
1 1
1 1
表示只有一个字母,这个字母可以是a.....z, 1代表下面只有一个操作区间,就是1 1,
当这个字母是a时, 它经过1 1这个操作区间进行有限次的“增加”后,可以变成b,c,d....z,那么a和b....z就是同一种锁,
当这个字母是b时, 它经过1 1这个操作区间进行有限次的“增加”后,可以变成a, c,d....z,因为a,....z已经是同一种锁了,,如果这个字母是c....
所以只有 1 种不同锁;
如果只有一个字母,,,没有可操作区间,即N = 1, M = 0, 那么
如果这个字母是a就不能变成b....z,所以a和b...z就不是同种锁,如果b,同理,,,所以总共有26个不同的锁;
样例 2
2 1
1 2
有两个字母组成, 一个操作区间,就是1到2;
当这两个字母是ab,在可操作区间1 2,它可以变成bc,cd,.....za;那么ab和bc,cd,.....za就是同种锁
当这两个字母是bc时, 当这两个字母是cd时......等等,这都和当字母是ab时相同,这算一种锁;
当字母是ac时,字母ac 和 bd.......zb都是属于同种锁,
当字母是ad时,当字母是等等,
所以有26种不同的
样例 3
2 2
1 1
2 2
两个字母,两个区间
当移动区间 1 1 时,当这两个字母是ab 时, 变成 bb, cb, db........zb这是一种锁
当我移动区间2 2时,当这两个字母是ab时,变成aa,,,,ac,ad,ae ......az;
所以 ab..................zb和 ab..................az属于同锁,以及他们的变换,
最终只会有一种不同锁,即只有一个锁