猫ER

Better later than never.

Generative Adversarial Networks

2019-06-01 21:27:36

阅读数 22

评论数 0

Recurrent Neural Network

RNN推导:https://zybuluo.com/hanbingtao/note/541458 LSTM:http://colah.github.io/posts/2015-08-Understanding-LSTMs/

2019-05-16 20:15:06

阅读数 29

评论数 0

卷积神经网络架构设计

import tensorflow as tf import get_Dataset x_train, y_train, x_test, y_test = get_Dataset.get_Dataset('mnist') batch_size = 100 def weight_init(sha...

2019-04-25 10:19:12

阅读数 24

评论数 0

MNIST本地加载,简单神经网络,run练习

import tensorflow as tf import get_Dataset import numpy as np x_train, y_train, x_test, y_test = get_Dataset.get_Dataset('mnist') batch_size = 100 ...

2019-04-25 09:33:54

阅读数 21

评论数 0

非线性回归

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis] noise = np.random.nor...

2019-04-23 20:27:47

阅读数 25

评论数 0

tensorflow中的一些操作

乘法:a*b, tf.multiply(a, b) 加法:a+b, tf.add(a, b) 随机数生成函数: 正态分布:tf.random_normal([size]/*张量*/, mean=0.0, stddev=1.0/*标准差*/, dtype=tf.float32, seed=1...

2019-04-23 19:21:26

阅读数 27

评论数 0

feed

feed:给占位符赋值 import tensorflow as tf #创建占位符号 input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = input1 * input2 with t...

2019-04-23 19:18:29

阅读数 21

评论数 0

fetch

fetch中文意思:拿来,请来,tensorflow中对于多个操作进行run。 import tensorflow as tf input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) add = tf.ad...

2019-04-23 19:16:17

阅读数 11

评论数 0

tensorflow整体结构流程

import tensorflow as tf G1 = tf.Graph() with G1.as_default(): operator... G2 = tf.Graph() with G2.as_default(): operator... with tf.Session(g...

2019-04-23 16:30:38

阅读数 24

评论数 0

RBM理论推导

RBM(Restricted Boltzmann Machine) 上面这个图就是一个RBM模型,它包括三个部分,最下面的可视层(visible layer),中间的权重连边(无向),上面的隐藏层(hidden layer),每一层都有一个偏置visible layer的偏置是a,隐藏层的偏...

2019-03-27 11:13:06

阅读数 54

评论数 0

CNN 卷积神经网络Back Propagation推导过程

卷积神经网络的传播过程: step1.二维的像素图片作为输入 step2.然后进入卷积层操作: 卷积层需要一个卷积核,通过卷积核对原图进行卷积操作,然后得到一张新的图,这张新的图中的每一个点代表了输入图片中每一块区域(该区域和卷积核区域一样大)的特征。 一个的图像经过的卷积核进行卷积...

2019-03-16 22:11:20

阅读数 1447

评论数 0

LBP 理论

LBP(Local Binary Patterns):局部二进制模式,用来描述图像局部纹理特征的算子。 LBP提取特征的步骤: step1.将图片划分成为很多个cell step2.计算每一个cell中的每一个像素点的LBP值 step3.计算每一个cell的直方图,也就是cell中每个L...

2019-03-16 20:24:27

阅读数 40

评论数 0

PCA 理论

PCA(Principal Component Analysis) :该矩阵表示有M个样例,每个样例有N维,通过PCA将其转化为:该矩阵表示有M个眼里,每个样例有维,其中,因此达到了降低维度的目的。 简单来说PCA是将原本单个样本从原先的维空间映射到空间上去,现在就是要找到映射矩阵,然后将其作...

2019-03-16 15:55:24

阅读数 41

评论数 0

Neural Network中运用Dropout算法理论推导以及代码实现中的一些技巧

下面是Dropout的一篇论文,可以下载下来看看 链接:https://pan.baidu.com/s/15zMj9pKY630hR8RXZZ2WDw 提取码:b57k 首先,简单几句话讲解一下Dropout的操作方法,随机的隐藏掉隐藏层的一定比例的神经元,输出层和输出层不用去隐藏掉一部分。在...

2019-02-28 20:02:42

阅读数 84

评论数 0

Neural Network L1正则,L2正则优化

假设原先未加入正则优化的 现在进行L1正则分析: 对其求偏导数: 因此的更新函数: 参数不需要做任何变化。 现在进行L2正则分析: 对其求偏导数: 因此的更新函数: 参数不需要做任何变化。 对于的求解可以参考: Neural Networks中使用Cross-Entropy C...

2019-02-25 20:15:40

阅读数 56

评论数 0

Neural Network-Softmax function-Cross Entropy Cost function的公式推导过程

方程组中的第一个等式表示的是损失函数,该损失函数的交叉熵函数Cross-Entropy Costfunction 方程组中的第二个等式表示的是每一个神经元的输出函数,其中在输出层使用SoftMax函数,其他层使用sigmoid函数 方程组中的第三个等式表示的是由上一层的神经元的输出和权重得到的...

2019-02-23 16:45:44

阅读数 125

评论数 0

Neural Networks中使用Cross-Entropy Cost Function交叉熵损失函数的理论推导

Cross-Entropy Cost Function: 其中 neural network一共有L层,假设输出层L有n个神经元 :真实数据的转化为列向量的第j个元素 :代表输出层的第j个元素 首先列出3个方程:   参数是w和b,所以要求出,       上...

2019-02-22 19:38:05

阅读数 95

评论数 0

对于GradientDescent(梯度下降)算法的理解

公式: 公式解释:用w减去其目标函数对w求得的偏导数乘以一个常数,之后所得到的新值再次赋值给w 上面的这个凸函数是一个二次函数,在点w处求得其梯度,也就是该点的导数值,该点的导数值表示该点下降的快,还是慢,它形容的是一个程度,是一个比重,不是一个具体的大小长短,类似于一个百分比,5%或者1...

2019-02-21 21:37:55

阅读数 103

评论数 0

读取mnist手写识别的数据集

mnist手写识别数据集地址:https://pan.baidu.com/s/1Z8xWdPlSZwkOE-Gwy2e0LA  提取码:by4g 里面有一个mnist.pkl的文件,pkl是一个很多的序列组成的文件(也就是一个序列化的东西),它已经把手写识别的图片(28*28)的转化成了一个向量...

2019-02-21 21:17:59

阅读数 267

评论数 0

BackPropagation算法理论详解及公式推导

定义:           :步长           :第(l-1)层隐藏层的第i个神经元------------>第(l)层隐藏层的第j个神经元的连线的权值            :第(l)层隐藏层的第j个神经元的偏量bias,下面的图片中的就是         ...

2019-02-19 21:40:44

阅读数 199

评论数 0

提示
确定要删除当前文章?
取消 删除