自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

猫ER

Better later than never.

  • 博客(384)
  • 资源 (6)
  • 论坛 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 TensorFlow2.0 模型部署

文章目录一、拉取TensorFlow Serving镜像二、模型打入TFServing镜像内部1.保存模型为pb格式2.将本地模型copy入镜像3.启动新的带有模型文件的镜像4.gRPC方式远程访问服务一、拉取TensorFlow Serving镜像docker pull tensorflow/serving如果需要gpu版本或者其他版本可以去Docker Hub自行选择。二、模型打入TFServing镜像内部1.保存模型为pb格式首先需要将tensorflow 模型保存为pb格式,通过如下代码

2020-12-11 10:13:36 83

原创 GO 错误处理与资源管理

文章目录0 前言1、资源管理与出错处理1.1 defer调用简单例子1简单例子22、出错处理概念2.1 自定义error3、服务器统一出错处理3.1 实现统一的错误处理逻辑4、panic和recover4.1 panic4.2 recover0 前言合理,成对使用1、资源管理与出错处理1.1 defer调用go语言是通过defer调用来实现资源管理的确保调用在函数结束时候发生简单例子1package mainimport "fmt"func tryDefer(){ defer

2020-11-18 19:32:49 66

原创 GO 函数式编程

文章目录1、函数式编程1.1 函数与闭包1.2 函数式编程 VS 函数指针1.2.1 “正统”函数式编程1.2.2 闭包1.2.2.1 python中的闭包1.2.2.2 c++中的闭包1.2.2.3 java中的闭包函数式编程样例一2.1 斐波那契数列2.2 为函数实现接口2.3 使用函数遍历二叉树2.4 go语言闭包的应用1、函数式编程1.1 函数与闭包经典样例func adder() func (value int) int{ sum := 0 return func(value in

2020-11-15 20:58:34 81

原创 GO 面向接口理论与实践

文章目录1、duck typing的概念1.1 接口1.2 duck typing概念1.2.1 python中的duck typing1.2.2 c++中的duck typing1.2.3 java中的类似代码1.2.4 go中的duck typing2、接口的定义和实现2.1 接口的实现3、接口的值类型3.1 接口变量里面有什么?3.2 获取接口里面的类型3.2.1 type assertion(类型断言)1、duck typing的概念1.1 接口相比较传统语言来说,go语言的接口更加的灵活t

2020-11-15 20:53:38 60

原创 GO 面向对象基础与实践

文章目录0、前言1、结构体和方法1.1 定义结构体1.2 结构体声明,初始化1.3 结构体中方法的定义与使用2、包和封装2.1 方法的封装2.2 包3、扩展已有类型4、GOPATH以及目录结构4.1 GOPATH环境变量4.2 获取第三方库-go get0、前言​ go语言仅支持封装,不支持继承和多态,而是通过接口形式实现多态。结构体到底是创建在堆上还是栈上,我们是不需要知道的,因为后面有完善的GC,当编译器看到如果返回的是变量,那么就认为是不需要将其保留给外部使用的,但是如果加上了取地址

2020-11-13 10:32:00 68

原创 TensorFlow2.0 迁移学习、抽取网络中的层输出

前言一些预训练好的模型,可以被用来当做特征提取器,如何使用成为关键。场景: 基于TF2.0提供的一些预训练好的2D图像分类网络,进行迁移学习。抽取网络basemodel = tf.keras.applications.ResNet50(weights='imagenet', input_shape=(224, 224, 3),

2020-10-26 19:40:04 293

原创 TensorFlow2.0 去除琐碎的WARNING

尝试了网上很多种方法,无效,下面的针对TF2.X有效import tensorflow as tftf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

2020-10-23 09:32:31 130

原创 TensorFlow2.0 大数据预处理Pipeline

目录一、为什么需要这样?二、如何解决?三、TF2.0提供的方法1、tf.data.Dataset中的map函数2、TFRecord一、为什么需要这样? 入门的时候,我们非常熟悉MNIST手写数字数据集,我们构建深度神经网络,比如CNN,MLP,LSTM等来训练数据集,我们一次性的加载了所有的数据集,然后不停地迭代训练。 当数据集非常大,大到50GB,100GB的时候,我们显然是不能将所有数据加载到内存空间的,不然的话硬件要求是非常苛刻的。...

2020-10-20 20:28:23 205

原创 GO 语言精准入门

目录一、变量1、语法:var 变量名称 变量类型2、如果定义变量的时候没有进行初始化,会使用默认初始值3、初始化声明 :=,下面两个方式是等价的4、因式分解关键字写法(一般用于全局变量)二、常量1、语法:const 常量名称 常量类型2、特殊的常量iota三、运算符四、基本逻辑语句1、条件语句2、循环语句五、函数1、语法2、和C++的不同之处3、注意点4、闭包5、方法一、变量1、语法:var 变量名称 变量类型var.

2020-10-05 21:19:53 98 1

原创 JDBC使用说明

一、JDBC定义JDBC(java连接、操作数据库):使用同意的一套java代码可以操作所有的关系型数据库(MySQL、Oracle、DB2)。定义了操作了所有关系型数据库的规则(规则就是“接口”sun定义),“接口”的实现由数据库厂商提供 “接口”的实现类叫做数据库驱动二、快速使用步骤导入驱动jar包:项目中创建一个libs,然后将驱动jar包存进去,然后右击libs选择add as library 注册驱动:Class.forName("com.mysql.jbdc.Driver"

2020-09-16 11:51:05 69

原创 DCL语言细节讲解

SQL分类:DDL:操作数据库和表 DML:增删改表中的数据 DQL:查询表中数据 DCL:管理用户,授权DBA:数据库管理员DCL:管理用户,授权1、管理用户 <1>添加用户: 语法:CREATE USER '用户名'@'主机名' INDENTIFIED BY '密码'; 例子:CREATE USER 'zhansan'@'localhost' INDENTIFIED BY '123'; CREATE US

2020-09-16 08:25:18 77

原创

类 = 属性+行为属性:该事物的状态信息行动:该事务能够做什么成员变量:直接定义在类当中,方法外成员方法:不要写static关键字使用类作为函数的输入参数:传入的是对象的地址值返回值类型是一个类:返回的是对象的地址值局部变量没有默认值,但是成员变量有默认值局部变量:随着方法进栈而诞生,随着方法出栈而消失成员变量:随着对象创建而诞生,随着对象被垃圾回收而消失封装性:方法就是一种封装,关键字private也是一种封装,通过get/set方法间接访问private成员变量...

2020-08-09 21:24:40 52

原创 数组

package cn.itcast; // package 语句public class HelloWrold { public static void main(String[] args) { System.out.println("hello world!!!!!!"); /* 1.动态初始化(指定长度) 2.静态初始化(指定内容) */ // 1. 动态初始化 int[.

2020-08-09 20:17:37 49

原创 TensorFlow2.0 利用TFRecord存取数据集,分批次读取训练

目录头文件一、读取数据集(图片名)二、将数据集图片、标签写入TFRecord三、从TFRecord中读取数据集四、构建模型五、训练模型实验结果头文件import tensorflow as tfimport os一、读取数据集(图片名)data_dir = "D:/dataset/cats_and_dogs_filtered"train_cat_dir = data_dir + "/train/cats/"train_dog_dir = data_.

2020-06-23 18:24:31 828

原创 TensorFlow2.0 分批读取数据集、训练

目录头文件一、处理数据集(dogs vs cats)二、自定义构建模型三、训练模型实验结果头文件import tensorflow as tfimport os一、处理数据集(dogs vs cats)data_dir = "D:/dataset/cats_and_dogs_filtered"train_cat_dir = data_dir + "/train/cats/"train_dog_dir = data_dir + "/train/dogs/".

2020-06-23 17:34:13 1325 8

原创 GluonTS 自定义模型预测时间序列

头文件import mxnet as mxfrom mxnet import gluonimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport jsonfrom gluonts.dataset.common import ListDataset1、继承gluon.HybridBlock类,自定义深度神经网络(隐藏层为【40, 40】的MLP)class MyTrainNetwork(gl

2020-06-17 10:32:12 390 4

原创 GluonTS 快速预测时间序列

目录头文件1、定义数据集2、构建简单前馈网络(MLP)进行预测3、训练完成之后对测试数据预测进行评估4、对结果进行画图展示5、训练代码头文件import mxnet as mxfrom mxnet import gluonimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport jsonfrom gluonts.dataset.common import ListD.

2020-06-17 10:22:42 511

原创 TensorFlow2.0 自定义层、自定义模块、自定义模型构建

头文件import numpy as npimport tensorflow as tfimport datetimeimport osfrom tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D1、加载数据集def load_dataset(): mnist = np.load("mnist.npz") return mnist['x_train']/255.0, mnist['y_tr

2020-06-15 16:38:58 840 2

原创 TensorFlow2.0 TensorBoard的使用

目录头文件1、加载数据集并处理2、构建模型3、训练模型4、查看TensorBoard头文件import numpy as npimport tensorflow as tfimport datetimeimport osfrom tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2Dfrom tensorflow.keras import Model1、加载数据集并处理def .

2020-06-12 15:55:31 699 2

原创 TensorFlow2.0 自定义损失函数

目录头文件1、数据集加载与处理2、自定义深度神经网络模型3、自损失函数函数式类式实验结果头文件:import numpy as npimport tensorflow as tffrom tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2Dfrom tensorflow.keras import Model1、数据集加载与处理def load_dataset(): .

2020-06-12 10:25:37 1519 6

原创 TensorFlow2.0 自定义评估函数

目录头文件1、数据集获取和处理2、模型构建-采用类自定义模型构建编码方式3、自定义评估函数4、构建深度神经网络的训练模块5、将自定义评估函数应用到Keras的model.fit方式中头文件import numpy as npimport tensorflow as tffrom tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2Dfrom tensorflow.keras import Mo

2020-06-11 20:41:50 850

原创 Java-多条件排序

对复杂结构体进行排序(JAVA里面没有结构体,对复杂类)定义如下内类NODEpublic class NODE{ int x, y; String str; public NODE(int x, int y, String str) { this.x = x; this.y = y; this.str = str; }} 通过实现借口Comparat...

2020-04-26 11:15:23 243

原创 C++ String常规操作

1、获得长度int len = s.length();2、连接字符串s = s1 + s2;3、比较字符串s1 < s24、倒置串reverse(s.begin(), s.end());5、字符串转字符数组char* c = new char[30];strcpy(c, s.c_str());6、查找串(1)int pos = s1.find(...

2020-03-21 17:50:42 98

原创 C++ 互斥量、死锁
原力计划

目录案例:共享数据:1、互斥量引入方法一:lock()、unlock()方法二:std::lock_guard()2、死锁解决方案:案例:游戏服务器,收到玩家的指令,然后处理指令,使用一个list容器来收集指令,用两个线程来维护接收、处理指令的操作。共享数据:如果对于共享数据是只读操作的话,不需要考虑互斥量问题 如果对共享数据需要进行读写操作的话...

2020-03-17 21:33:45 318

原创 C++ STL
原力计划

目录一、lower_bound 和 upper_bound二、vector1.头文件2.初始化3.容量操作4.修改5.迭代器6.元素访问三、map1.头文件2.定义map3.数据的插入4.map的大小5.遍历6.查找7.删除8.交换9.排序一、lower_bound 和 upper_bound头文件#includ...

2020-03-13 19:46:21 135

原创 C++ 按位运算

一、cout如果输出按位运算结果,需要使用int强制转换,如果是printf,前面是%d就可以。其他地方代码直接用。#include<iostream>#include<cstdio>#include<cstring>using namespace std;int main(){ int a, b; cin>> a&...

2020-03-13 10:01:44 192

原创 FPN 特征金字塔网络

目录一、引入二、FPN结构三、FPN的使用一、引入 很久以前的目标检测算法,为了可以检测到一张图片中不同尺度的物体,需要对图片进行不同尺寸的缩放,缩放之后的图片集就是图像金字塔。 为什么在特征提取网络中也需要FPN(Feature Pyramid Network)呢,?传统的CNN网络结构通过不断地卷积和下采样,得到了图像的抽象特征,但是...

2020-03-05 17:29:03 428

原创 SPP-Net目标检测算法深度剖析
原力计划

目录一、引入SSP-Net二、SSP-Net简介三、网络架构四、总结论文地址 :https://arxiv.org/abs/1406.4729一、引入SSP-Net 为何们猛然间对SSP-Net起了好奇之心呢?因为在学习R-CNN系列算法的时候,总有资料提到SSP-Net(Spatial Pyramid Pooling-Net)算法(其实是一种深度学习的网...

2020-02-25 16:36:56 341

原创 YOLO_9000目标检测算法深度剖析

目录一、何为YOLO_9000二、9000种类的思考三、引入WordTree四、如何计算分类的损失五、如何进行预测六、相较YOLO_v2训练流程的改变一、何为YOLO_9000 YOLO_9000是在YOLO_v2的基础上进行9000中目标的分类算法,其结构等都与YOLO_v2一致,唯一不同的就是分类地方,不再是原先的20位,而是具有更加多样性的900...

2020-02-22 16:45:32 205

原创 YOLO_v2目标检测算法深入剖析

目录一、YOLOv2引入二、网络结构1、结构纵览2、passthrougth层三、Batch Normalization四、微调分类模型五、Anchor思想六、预测边框的位置七、多尺度图像训练八、YOLO_v2训练过程九、损失函数十、总结论文地址:https://arxiv.org/abs/1612.08242一、YOLOv2引入 ...

2020-02-21 16:42:03 373

原创 YOLO_v1目标检测算法深入理解

目录一、YOLO算法的引入二、算法的初步思考二、简单的网络结构三、数据集的处理四、LOSS函数的形成1、类别部分2、存在物体的置信度部分3、不存在物体的置信度部分4、宽高的部分5、LOSS公式中的几个lambda参数五、预测六、总结论文地址:https://arxiv.org/abs/1506.02640一、YOLO算法的引入 ...

2020-02-19 17:20:10 326

原创 R-CNN、Fast R-CNN、Faster R-CNN深度剖析

讲解目标检测中R-CNN系列的发展变迁,以及家族中各个版本算法的特点,并且着重讲解Faster R-CNN的详细原理,以及算法的首先流程,模型的训练流程。

2020-02-17 20:38:28 312

原创 MySQL进阶十一:DDL数据定义语言概论

目录DDL含义一、库的管理1、库的创建2、库的修改3、库的删除二、表的管理1、表的创建语法2、表的修改语法案例3、表的删除语法通用写法4、表的复制案例文章涉及到的MySQL、SQLyog的配置安装,请参考MySQL配置+SQLyog安装教程DDL含义库和表的管理库的管理:创建、修改、删除 表的管理:...

2020-02-16 19:21:05 150

原创 MySQL进阶十:DML-删除

目录DML-DELETE语法1、单表删除2、多表删除3、truncate语句4、delete与truncate对比文章涉及到的MySQL、SQLyog的配置安装,请参考MySQL配置+SQLyog安装教程DML-DELETE语法#单表的删除delete from 表名where 筛选条件#多表的删除方法一:deletesql92语法:...

2020-02-16 18:43:03 145

原创 MySQL进阶十:DML-更新

目录DML-UPDATE语法1、修改单表的记录2、修改多表的记录文章涉及到的MySQL、SQLyog的配置安装,请参考MySQL配置+SQLyog安装教程DML-UPDATE语法#修改单表记录update 表名set 列=新值,列=新值,... #字符或者日期型要加单引号where 筛选条件;#修改多表的记录sql92语法update 表1 ...

2020-02-16 18:30:50 178

原创 MySQL进阶十:DML-插入

目录DML-INSERT语法一1、插入的值的类型与列的类型一致或者兼容2、不可以为null的列必须插入值,可以为null的列是如何插入值?方法一:经典的插入方法二:nullable的都可以不写方法三:写入特定的3、列的顺序可以调换4、列数和值的个数必须一致5、可以省略列名语法二两种方法的PK1、方式一支持插入多行,方式二不支持2、方式一支持子...

2020-02-14 21:09:29 275

原创 MySQL进阶九:联合查询

目录UNION含义语法应用场景特点文章涉及到的MySQL、SQLyog的配置安装,请参考MySQL配置+SQLyog安装教程UNION含义将多条查询语句的结果合并成一个结果语法查询语句1union查询语句2union...应用场景要查询的结果来自于多个表,且多个表没有直接的连接关系,但是查询的信息一致时特点要求多条查询语句的...

2020-02-14 20:50:07 450

原创 MySQL进阶八:分页查询

目录LIMIT应用场景语法特点文章涉及到的MySQL、SQLyog的配置安装,请参考MySQL配置+SQLyog安装教程LIMIT应用场景当需要显示的数据,一页显示不全,需要分页提交sql请求语法select 查询列表from 表1【join type join 表2on连接条件where 筛选条件group by 分组字段having...

2020-02-14 20:28:58 2440

原创 MySQL进阶七:子查询

目录SELECT嵌套SELECT含义分类按字查询出现的位置按结果集的不同一、where、having后面特点1、标量子查询2、列子查询3、行子查询二、select后面三、from后面四、exists后面语法文章涉及到的MySQL、SQLyog的配置安装,请参考MySQL配置+SQLyog安装教程SELECT嵌套SELECT含...

2020-02-14 20:07:26 417

原创 MySQL进阶六:连接查询

目录连接查询JOIN含义笛卡儿乘积现象分类按年代分类按功能分类一、sql921、等值连接1) 为表起别名2) 两个表的顺序可以交换3) 插入筛选4) 加入分组5) 加入排序6) 实现三表连接2、非等值连接3、自连接二、sql99语法1、内连接语法特点1) 调换位置2) 添加筛选3) 分组+筛选4)...

2020-02-13 21:29:38 1499

PyAV-develop.zip

python 中的库 是 PyAV-develop.zip的压缩文件。针对于无法直接pip下载的用户。

2019-10-31

ELM能否直接训练阈值网络

TITTLE:能否直接训练阈值网络(threshold networks) Abstract: 1.具有阈值激活函数(threshold activation functions)的神经网络是非常客观的,因为易于硬件实现。 2.目前流行的基于梯度的学习算法不能用于训练这些网络(neural networks),因为 阈值函数(threshold functions)不可微的。 3.文献中的主要方法是通过sigmoid函数来逼近阈值激活函数的。 4.理论分析表明,ELM算法可以直接训练具有阈值函数的神经网络,而不必用sigmoid函数逼 近。 5.基于实际基准回归问题(real-world benchmark regression problems)的实验结果表明了 ELM的泛化性能优于阈值网络中使用到的其它算法。 6.ELM方法不需要控制变量(手动调节参数),而且速度更快。

2018-09-25

TCP NewReno对快速恢复算法的改进

详细讲述了TCP NewReno对快速恢复算法的改进。如何解决多包丢失的问题。

2018-06-02

TCP拥塞控制算法慢启动,拥塞避免,快速重传,快速恢复

要想更好的了解TCP端到端拥塞控制机制,首先要学习端到端拥塞控制的4个基本也是最主要的算法:slow_start, congestion avoidance, fast retransmit, fast recovery。

2018-06-02

UDP多客户端聊天文件传输源码

简单实现代码

2017-06-05

模拟进程管理课设(FCFS,SJF,时间片轮转调度法)

2016-07-02

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除