【一天一道LeetCode】#70. Climbing Stairs

爬楼梯问题与动态规划
本文探讨了经典的爬楼梯问题,使用动态规划方法求解不同跳跃方式的数量,并提供了详细的代码实现。

一天一道LeetCode

本系列文章已全部上传至我的github,地址:ZeeCoder‘s Github

欢迎大家关注我的新浪微博,我的新浪微博

欢迎转载,转载请注明出处

(一)题目

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

(二)解题

题目大意:从零开始每次跳一步或者两步,跳到N总共有多少种不同的跳法。
很典型的动态规划问题,状态转移方程为,dp[n] = dp[n-1]+dp[n-2]。

class Solution {
public:
    int climbStairs(int n) {
        int dp[n];//纪录跳到i的不同路径的个数
        if(n==0) return 1;//0的时候返回1
        if(n==1) return 1;
        dp[0] = 1;
        dp[1] = 1;
        for(int i = 2 ; i <= n ; i++)
        {
            dp[i] = dp[i-1]+dp[i-2];//按状态转移方程进行计算
        }
        return dp[n];//返回跳到n的次数
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值