3992: [SDOI2015]序列统计

容易列出dp方程 f[i][j] f [ i ] [ j ] 表示第i个位置乘积为 j j 的方案数。
那么推出转移 f[i+1][jp%m]+=f[i][j]
此时复杂度 O(nm2) O ( n ∗ m 2 ) 显然不能接受
想到对于 n n 特别大的情况一般都会用快速幂。
那么可以列出一个m*m的矩阵进行转移,复杂度O(lognm2)
明显还是不能接受,发现瓶颈在于m.
考虑利用fft把 m2 m 2 优化掉
如何优化,发现因为 jp%m j ∗ p % m 导致没法直接递推
那么利用原根 g g 的性质,求出m的原根。
已知 gi g i 互不相同,令 i=g[i] i = g [ i ]
那么原方程可写作 f[i+1][gjgp%m]+=f[i][j]f[i+1][gj+p%m]+=f[i][j] f [ i + 1 ] [ g j ∗ g p % m ] + = f [ i ] [ j ] → f [ i + 1 ] [ g j + p % m ] + = f [ i ] [ j ]
那么这样显然可以用fft优化
复杂度 O(lognlogmm) O ( log ⁡ n ∗ log ⁡ m ∗ m )
c++代码如下:

#include <bits/stdc++.h>
#define rep(i,x,y) for(register int i = x; i <= y; ++ i)
#define repd(i,x,y) for(register int i = x ; i >= y; -- i)
using namespace std;
typedef long long ll;
template<typename T>inline void read(T&x)
{
    x = 0;char c;int sign = 1;
    do { c  = getchar(); if(c == '-') sign = -1; }while(!isdigit(c));
    do { x = x * 10 + c - '0'; c = getchar(); }while(isdigit(c));
    x *= sign;
}

const ll N = 2e4+50,mod = 1004535809,G = 3;
ll n,m,x,g,L,len,inv,S,s[N],ind[N];
ll R[N],a[N],b[N],c[N],d[N];

inline ll quick_pow(ll x,ll y,ll p)
{
    ll ans = 1;
    while(y)
    {
        if(y&1) ans = ans * x % p;
        x = x * x % p;
        y >>= 1;
    }
    return ans;
}

inline void get_g(ll m)
{
    rep(i,1,m-1)
    {
        int j = 1;
        while(j < m) { if(quick_pow(i,j,m) == 1) break; ++j; }
        if(j == m - 1)
        {
            g = i;
            break;
        }

    }
}

inline void ntt(ll*a,ll f)
{
    rep(i,0,len-1) if(i < R[i]) swap(a[i],a[R[i]]);
    for(register int i = 1 ;i < len; i <<= 1)
    {
        ll wn = quick_pow(G,(mod - 1)/(i << 1),mod);

        if(f == -1) wn = quick_pow(wn,mod - 2,mod);
        for(register int j = 0;j < len; j += i << 1)
        {
            ll w = 1;
            for(register int k = 0;k < i; ++ k,w = w * wn % mod)
            {
                ll x = a[j + k],y = w * a[i + j + k] % mod;
                a[j + k] = (x + y) % mod;
                a[i + j + k] = ((x - y)%mod + mod) %mod; 
            }
        }
    }
    if(f == -1)
    {
        rep(i,0,len-1) a[i] = a[i] * inv % mod;
    }
}

inline void mul(ll*a,ll*b,ll m)
{
    rep(i,0,len - 1) c[i] = a[i],d[i] = b[i];
    ntt(c,1); ntt(d,1);
    rep(i,0,len - 1) c[i] = c[i] * d[i] % mod,a[i] = 0;
    ntt(c,-1);
    rep(i,0,len - 1) a[i%m] = (a[i%m] + c[i]) % mod;
}

inline void solve()
{
    inv = quick_pow(len,mod - 2,mod);
    a[ind[1]] = 1;
    rep(i,1,S) if(s[i]) b[ind[s[i]]] = 1;

    while(n)
    {
        if(n&1) mul(a,b,m - 1);
        mul(b,b,m - 1);
        n >>= 1;
    }
}

int main()
{
    read(n); read(m); read(x); read(S);
    rep(i,1,S) read(s[i]);

    get_g(m);

    rep(i,0,m - 2) ind[quick_pow(g,i,m)] = i;

    for(len = 1; len <= m * 2; len <<= 1) ++ L;

    rep(i,0,len - 1) R[i] = (R[i >> 1] >> 1) | ((i & 1)<<(L - 1));

    solve();

    printf("%lld\n",a[ind[x]]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值