【BZOJ3992】序列统计(SDOI2015)-NTT+循环卷积+快速幂

测试地址:序列统计
做法:本题需要用到NTT+循环卷积+快速幂。
这个题我们很快就想出状态转移:令 f(i,j) f ( i , j ) 为前 i i 个数的乘积模m的结果为 j j 的数列方案数,那么有:
f(i,j)=0k<mlS[(k×l)%m=j]f(i1,k)
其中 [U] [ U ] 表示表达式 U U 成立时值为1,否则值为 0 0
但是这个式子是O(nm2)的,无法承受。
由于运算是乘法,所以没办法使用NTT求卷积,那有没有什么办法把乘法变成加法呢?
我们在高中学过对数,对数满足 loga(xy)=logax+logay l o g a ( x y ) = l o g a x + l o g a y ,这就把乘法变成了加法,但是这是在实数域中,在模意义域中有没有类似的东西呢?
因为 m m 是质数,所以一定存在一个原根g,根据原根的性质, g0,g1,...,gm2 g 0 , g 1 , . . . , g m − 2 在模 m m 意义下各不相同,因此我们类似的定义离散对数I(y)为使得 gx%m=y g x % m = y x x ,于是我们有:
i=1nxig[i=1nI(xi)]%(m1)(modm)
于是我们用 I(j) I ( j ) 替代 f(i,j) f ( i , j ) 中的第二维下标 j j ,并用I(l)替换 l l 成为S中的元素,称为 S0 S 0 ,于是式子变为:
f(i,j)=0k<m1lS0[(k+l)%(m1)=j]f(i1,k) f ( i , j ) = ∑ 0 ≤ k < m − 1 ∑ l ∈ S 0 [ ( k + l ) % ( m − 1 ) = j ] f ( i − 1 , k )
这样就把原来转移时候的模意义下的乘法变成了模意义下的加法。接下来我们定义向量 F(i) F ( i ) f(i,0),...,f(i,m2) f ( i , 0 ) , . . . , f ( i , m − 2 ) 这一些数,我们发现 F(i) F ( i ) 就是 F(i1) F ( i − 1 ) 和另一个向量 A A 的一个循环卷积,其中Ai=[iS0],只用将卷积后下标 i i 大于m2的值都累加在下标为 i%(m2) i % ( m − 2 ) 的位置上即可。用NTT优化求循环卷积的过程,时间复杂度降为 O(nmlogm) O ( n m log ⁡ m )
然而还是不够, n n 达到了109,意识到循环卷积运算满足交换律和结合律,用快速幂即可加速到 O(mlognlogm) O ( m log ⁡ n log ⁡ m ) ,至于原根可以直接 O(m2) O ( m 2 ) 暴力求(实际上常数小的多),这样就解决了这道题。
有的同学可能注意到,上述方法不能处理 x=0 x = 0 的情况,BZOJ上的题面说是有 x=0 x = 0 ,但洛谷上没有 x=0 x = 0 ,并且这份代码在两边都过了,所以推断数据应该不存在这种情况,所以无需特判。
以下是本人代码:

#include <bits/stdc++.h>
#define ll long long
#define mod 1004535809
#define g 3
using namespace std;
int n,m,x,s,p[8010],save,r[30010];
ll M[30010]={0},S[30010]={0};
bool vis[8010];

ll power(ll a,ll b)
{
    ll s=1,ss=a;
    while(b)
    {
        if (b&1) s=(s*ss)%mod;
        ss=(ss*ss)%mod,b>>=1;
    }
    return s;
}

void NTT(ll *a,int n,int type)
{
    for(int i=0;i<n;i++)
        if (i<r[i]) swap(a[i],a[r[i]]);
    for(int mid=1;mid<n;mid<<=1)
    {
        ll W=power(g,(mod-1)/(mid<<1));
        if (type==-1) W=power(W,mod-2);
        for(int l=0,r=mid<<1;l<n;l+=r)
        {
            ll w=1;
            for(int k=0;k<mid;k++,w=(w*W)%mod)
            {
                ll x=a[l+k],y=(w*a[l+mid+k])%mod;
                a[l+k]=(x+y)%mod;
                a[l+mid+k]=((x-y)%mod+mod)%mod;
            }
        }
    }
    if (type==-1)
    {
        int inv=power(n,mod-2);
        for(int i=0;i<n;i++)
            a[i]=(a[i]*inv)%mod;
    }
}

void power_conv(ll *a,int b,int n,ll *ans)
{
    while(b)
    {
        NTT(a,n,1);
        if (b&1)
        {
            NTT(ans,n,1);
            for(int i=0;i<n;i++)
                ans[i]=(ans[i]*a[i])%mod;
            NTT(ans,n,-1);
            for(int i=0;i<n;i++)
                if (i>=save) ans[i%save]=(ans[i%save]+ans[i])%mod,ans[i]=0;
        }
        for(int i=0;i<n;i++)
            a[i]=(a[i]*a[i])%mod;
        NTT(a,n,-1);
        for(int i=0;i<n;i++)
            if (i>=save) a[i%save]=(a[i%save]+a[i])%mod,a[i]=0;
        b>>=1;
    }
}

int main()
{
    scanf("%d%d%d%d",&n,&m,&x,&s);

    for(int i=2;i<=m;i++)
    {
        memset(vis,0,sizeof(vis));
        bool flag=1;
        for(int j=0,w=1;j<m-1;j++,w=(w*i)%m)
        {
            if (vis[w]) {flag=0;break;}
            else p[w]=j,vis[w]=1;
        }
        if (flag) break;
    }

    for(int i=1;i<=s;i++)
    {
        int v;
        scanf("%d",&v);
        v%=m;
        if (v) M[p[v]]++;
    }

    int bit=0,t=1;
    while(t<(m<<1)) bit++,t<<=1;
    r[0]=0;
    for(int i=1;i<t;i++)
        r[i]=(r[i>>1]>>1)|((i&1)<<(bit-1));
    save=m-1,m=t;

    S[0]=1;
    power_conv(M,n,m,S);

    printf("%lld",S[p[x]]);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值