矛盾方程的最小二乘解

首先看两个个结论:
结论一:方程组 Ax=b 的最小二乘解的通式为

x=Gb+(IGA)y
, 其中 GA{ 1,3} , y Cn 中的任意向量.

结论二:只有 A 是满秩时, 矛盾方程组 Ax=b 的最小二乘解才是唯一的, 且为 x0=(AHA)1AHb

### 关于求矛盾方程组最小二乘 #### 定义与背景 当面对一个超定线性方程组 \( Ax = b \),其中矩阵 \( A \in \mathbb{R}^{m \times n} (m > n) \) 和向量 \( b \in \mathbb{R}^m \),通常情况下该方程组没有精确。此时,目标是找到一个最接近真实的近似 \( x_{LS} \),使得残差平方和达到最小: \[ r(x) = \| Ax - b \|^2_2 \] 这便是所谓的最小二乘问题。 #### 决方案概述 为了获得这样的最优,可以通过多种途径实现 QR 分是一种有效的方式之一。具体来说,存在三种主要技术用于执行 QR 分:Householder 变换、Givens 旋转以及改进版 Gram-Schmidt 正交化过程[^1]。 这些方法的核心在于将原始系数矩阵转换成更易于处理的形式——上三角形结构 Q 是正交阵而 R 则为上三角矩阵。一旦完成了这种变换,就可以利用回带法轻松获取最终的结果。 对于秩亏损的情况,即 rank(A)<n 的情形下,仍然能够应用上述策略来寻求最佳拟合;不过需要注意的是,在此过程中可能会遇到自由度的问题,这时往往需要额外设定某些参数以便完成整个计算流程。 另外值得注意的一点是在实际操作层面,即使原方程组本身并不具备唯一确定性的答,通过引入最小二乘准则之后总能找到一组特定形式下的“最好”的答案。这是因为当我们无法让所有等号严格成立的时候,转而去追求整体误差尽可能小的目标成为了可行的选择[^2]。 最后从几何角度理这个问题也很直观:给定任意一个不在列空间内的向量 b ,我们可以把它投影到由 A 所张成的空间上去从而得到最近似的表示\[ ^3 \] 。这个投影实际上就是我们要找的那个最小二乘意义上的。 ```python import numpy as np from scipy.linalg import qr def least_squares_qr(A, b): """ 使用QR分最小二乘问题 """ # 进行QR分 Q, R = qr(A, mode='economic') # 计算y=Q.T*b y = np.dot(Q.T, b) # 对Rx=y使用回代求x x_ls = np.linalg.solve(R[:len(b), :], y) return x_ls ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值