Matlab实现多项式拟合(矛盾方程组)(最小二乘法拟合)
Tip
@这是我第一次使用 (0基础)Matlab 来对 多项式拟合 进行一个公式原理上的编写。
@帮我一个好集美写的,目前大二,她数学专业。
@期间学习了一些Matlab语言的基本语法和简单功能。
@记录一下,欢迎下方评论交流不足。
:-)
最小二乘法(Least Square Method)
通过最小化误差(也叫残差)的平方和寻找数据的最优函数匹配。
通过一些迷惑操作你会得到 一组数据集(x,y) 来拟合以下函数(重点是数据集)
也就是通过多个(x,y)的点来逼近原始函数。
最后求得系数矩阵{a0······an},再把x,y看作未知量,是不是就是一个y=F(x)函数啦。
公式
由公式可见
其中的 a 是不是很好求呢,求法如下:
法一 °
初中学的移项嘛0.0。
但是要注意这里是矩阵运算哦。
!!矩阵里没有除法这个概念。
自行参考矩阵运算规则和我的代码理解。
法二 °
众多教材上提到的法方程组公式,原理不变,只是上面那个公式换了一个形式。
转换为代码实质上就是需要构建法方程矩阵来运算系数矩阵。
合并运算得出法方程系数矩阵
合并运算得出后面那一坨= =
然后你就还是回到美好的初中时代,进行移项吧。
直接欧代码环节
// YunI@辞鹤
// 20210418
function u =polyfitting(x,y,n) %声明函数
G=ones(length(x),n+1); %构建G矩阵
for i=1:length(x)
for j=2:n+1
G(i,j) = x(i)^(j-1);
end
end
X=G'*G;
%y法方程矩阵
[m,~]=size(X);
b=zeros(m,1); %m×1的0矩阵
b(1) = sum(y);
for i=2:m
for j=1:length(y)
b(i) =b(i)+y(j)*x(j)^(i-1);
end
end
%用法方程公式算系数
%A=X\b;
%直接用公式算系数
A=(G'*G)\G'*y';
xx=min(x):0.5:max(x); %步长根据自我需求设置
%构建拟合多项式
Y=A(1);
for num=2:1:n+1
Y=Y+A(num)*xx.^(num-1);
end
%绘图
plot(x,y,'r.')
hold on;
plot(xx,Y)
u=Y
end