如何实现一个spark数据源

本文介绍了如何基于Spark 1.6.1实现一个自定义数据源。内容涵盖Spark数据源API的基本接口,如BaseRelation、TableScan和RelationProvider,以及如何通过DataFrame和Spark SQL来使用自定义数据源。在实现过程中,详细讲解了创建RelationProvider类,以及在查询时如何生成RDD[Row]。同时,提供了代码示例和相关参考资料。
摘要由CSDN通过智能技术生成

如何实现一个spark数据源(基于spark 1.6.1)

简介

spark data source API是一套接口,让开发者可以通过实现这些接口,从而将存储在磁盘(或者hdfs whatever)上的各种格式的数据转化为DataFrame;或者将DataFrame写为各种格式的数据保存起来。

这些接口定义在:
sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala

一般来讲,所有的数据源都要实现以下三个接口:

  • BaseRelation 代表了一个抽象的数据源。该数据源由一行行有着已知schema的数据组成(关系表)。
  • TableScan 用于扫描整张表,将数据返回成RDD[Row]。
  • RelationProvider 顾名思义,根据用户提供的参数返回一个数据源(BaseRelation)。

当然,spark也提供了其他接口来丰富你的数据源的功能, 这些都可以在上述的文件中找到相应的描述。比如PrunedFilteredScan接口,spark将需要的行和列传入,那么你的数据源就可以根据这些信息过滤掉不需要的行和列。如果某些表达式无法处理&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值