Spark 高级数据源

一、Spark Streaming接收Flume数据

1.1 基于Flume的Push模式

Flume被用于在Flume agents之间推送数据.在这种方式下,Spark Streaming可以很方便的建立一个receiver,起到一个Avro agent的作用.Flume可以将数据推送到该receiver。

(1)第一步:Flume的配置文件

#bin/flume-ng agent -n a4 -f myagent/option_Push -c conf -Dflume.root.logger=INFO,console

#定义agent名, source、channel、sink的名称
a4.sources = r1
a4.channels = c1
a4.sinks = k1

#具体定义source
a4.sources.r1.type = spooldir
a4.sources.r1.spoolDir = /usr/local/tmp_files/logs

#具体定义channel
a4.channels.c1.type = memory
a4.channels.c1.capacity = 10000
a4.channels.c1.transactionCapacity = 100

#具体定义sink
a4.sinks = k1
a4.sinks.k1.type = avro
a4.sinks.k1.channel = c1
a4.sinks.k1.hostname = 192.168.1.121
a4.sinks.k1.port = 1234

#组装source、channel、sink
a4.sources.r1.channels = c1
a4.sinks.k1.channel = c1

内容解释:
在这里插入图片描述
(2)第二步:Spark Streaming程序

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.storage.StorageLevel

object FlumeLogPush {
  def main(args: Array[String]): Unit = {
  
   val conf = new SparkConf().setAppName("FlumeLogPush").setMaster("local[2]")
    val ssc = new StreamingContext(conf,Seconds(3))

    //创建flumeEvent的DStream
    val flumeEvent = FlumeUtils.createPollingStream(ssc, "192.168.1.121",1234, StorageLevel.MEMORY_ONLY)

    //将FlumeEvent中的事件转成字符串
    val lineDStream = flumeEvent.map(e => {
      new String(e.event.getBody.array)

    })

    //输出结果
    lineDStream.print()

    ssc.start()

    ssc.awaitTermination()


  }
}

(3)第三步:注意除了需要使用Flume的lib的jar包以外,还需要以下jar包:

链接:https://pan.baidu.com/s/1v7jhZ4A1tK-GKUNH-lCwHw
提取码:5kw8

(4)第四步:测试

启动Spark Streaming程序
启动Flume
拷贝日志文件到/usr/local/tmp_files/logs目录
观察输出,采集到数据
在这里插入图片描述

1.2 基于Custom Sink的Pull模式

不同于Flume直接将数据推送到Spark Streaming中,第二种模式通过以下条件运行一个正常的Flume sink。Flume将数据推送到sink中,并且数据保持buffered状态。Spark Streaming使用一个可靠的Flume接收器和转换器从sink拉取数据。只要当数据被接收并且被Spark Streaming备份后,转换器才运行成功。

这样,与第一种模式相比,保证了很好的健壮性容错能力。然而,这种模式需要为Flume配置一个正常的sink

以下为配置步骤:

(1)第一步:Flume的配置文件

#bin/flume-ng agent -n a1 -f myagent/option_Pull -c conf -Dflume.root.logger=INFO,console
a1.channels = c1
a1.sinks = k1
a1.sources = r1

a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /usr/local/tmp_files/logs

a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 100000

a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = 192.168.1.121
a1.sinks.k1.port = 1234

#组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

(2)第二步:Spark Streaming程序

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.storage.StorageLevel

object FlumeLogPull {
def main(args: Array[String]) {
  val conf = new SparkConf().setAppName("FlumeLogPull").setMaster("local[2]")
  val ssc = new StreamingContext(conf, Seconds(10))

  //创建FlumeEvent的DStream
  val flumeEvent = FlumeUtils.createPollingStream(ssc,"192.168.1.121",1234,StorageLevel.MEMORY_ONLY_SER_2)

  //将FlumeEvent中的事件转成字符串
  val lineDStream = flumeEvent.map( e => {
  new String(e.event.getBody.array)
})

  //输出结果
  lineDStream.print()

  ssc.start()
  ssc.awaitTermination();
}
}

(3)第三步:需要的jar包

将Spark的jar包拷贝到Flume的lib目录下

下面的这个jar包也需要拷贝到Flume的lib目录下,同时加入IDEA工程的classpath

链接:https://pan.baidu.com/s/1v7jhZ4A1tK-GKUNH-lCwHw
提取码:5kw8

(4)第四步:测试

启动Flume

在IDEA中启动FlumeLogPull

将测试数据拷贝到/usr/local/tmp_files/logs

观察IDEA中的输出
在这里插入图片描述

二、Spark Streaming接收Kafka数据

Apache Kafka是一种高吞吐量的分布式发布订阅消息系统。
在这里插入图片描述

2.1 搭建ZooKeeper(Standalone):

(1)配置/root/training/zookeeper-3.4.10/conf/zoo.cfg文件

dataDir=/root/training/zookeeper-3.4.10/tmp
server.1=spark81:2888:3888

(2)在/root/training/zookeeper-3.4.10/tmp目录下创建一个myid的空文件

echo 1 > /root/training/zookeeper-3.4.6/tmp/myid

2.2 搭建Kafka环境(单机单broker):

(1)修改server.properties文件
在这里插入图片描述
(2)启动Kafka

bin/kafka-server-start.sh config/server.properties &

出现以下错误:
在这里插入图片描述

(3)测试Kafka

//创建Topic
bin/kafka-topics.sh --create --zookeeper spark81:2181
-replication-factor 1 --partitions 3 --topic mydemo1

//发送消息
bin/kafka-console-producer.sh --broker-list spark81:9092 --topic mydemo1

//接收消息
bin/kafka-console-consumer.sh --zookeeper spark81:2181 --topic mydemo1

2.3 搭建Spark Streaming和Kafka的集成开发环境

由于Spark Streaming和Kafka集成的时候,依赖的jar包比较多,而且还会产生冲突。强烈建议使用Maven的方式来搭建项目工程。

下面是依赖的pom.xml文件:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>ZDemo5</groupId>
<artifactId>ZDemo5</artifactId>
<version>1.0-SNAPSHOT</version>

<properties>
<spark.version>2.1.0</spark.version>
<scala.version>2.11</scala.version>
</properties>

<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>

<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>2.1.1</version>
</dependency>
</dependencies>

</project>

2.4 基于Receiver的方式

这个方法使用了Receivers来接收数据。Receivers的实现使用到Kafka高层次的消费者API。对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据。
在这里插入图片描述

(1)开发Spark Streaming的Kafka Receivers

import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

object KafkaWordCount {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]")
    val ssc = new StreamingContext(conf, Seconds(10))

    //创建topic名称,1表示一次从这个topic中获取一条记录
    val topics = Map("mydemo1" -> 1)

    //创建Kafka的输入流,指定ZooKeeper的地址
    val kafkaStream = KafkaUtils.createStream(ssc,"192.168.1.121:2181","mygroup",topics)

    //处理每次接收到的数据
    val lineDStream = kafkaStream.map(e => {
      new String(e.toString())
    })
    //输出结果
    lineDStream.print()

    ssc.start()
    ssc.awaitTermination();
  }
}

(2)测试

启动Kafka消息的生产者

bin/kafka-console-producer.sh --broker-list spark81:9092 --topic mydemo1

在IDEA中启动任务,接收Kafka消息
在这里插入图片描述

2.5 直接读取方式

和基于Receiver接收数据不一样,这种方式定期地从Kafka的topic+partition中查询最新的偏移量,再根据定义的偏移量范围在每个batch里面处理数据。当作业需要处理的数据来临时,spark通过调用Kafka的简单消费者API读取一定范围的数据。
在这里插入图片描述

(1)开发Spark Streaming的程序

import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka.KafkaUtils

object DirectKafkaWordCount {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[2]")
    val ssc = new StreamingContext(conf, Seconds(10))

    //创建topic名称,1表示一次从这个topic中获取一条记录
    val topics = Set("mydemo1")
    //指定Kafka的broker地址
    val kafkaParams = Map[String, String]("metadata.broker.list" -> "192.168.1.121:9092")

    //创建DStream,接收Kafka的数据
    val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)

    //处理每次接收到的数据
    val lineDStream = kafkaStream.map(e => {
      new String(e.toString())
    })
    //输出结果
    lineDStream.print()

    ssc.start()
    ssc.awaitTermination();
  }
}

(2)测试

启动Kafka消息的生产者

bin/kafka-console-producer.sh --broker-list spark81:9092 --topic mydemo1

在IDEA中启动任务,接收Kafka消息
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值