一只小蜜蜂...
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 81160 Accepted Submission(s): 29106
Problem Description
有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行。请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数。
其中,蜂房的结构如下所示。
其中,蜂房的结构如下所示。

Input
输入数据的第一行是一个整数N,表示测试实例的个数,然后是N 行数据,每行包含两个整数a和b(0<a<b<50)。
Output
对于每个测试实例,请输出蜜蜂从蜂房a爬到蜂房b的可能路线数,每个实例的输出占一行。
Sample Input
2 1 2 3 6
Sample Output
1 3
Author
lcy
Source
问题链接:HDU2044 一只小蜜蜂...。基础训练题,用C语言编写程序。
问题简述:参见上述链接。
问题分析:这个问题非常类似于:HDU2041 超级楼梯,略微有些不同。
站在第n个蜂房想一下,前一步是从哪里来的,问题就清楚了。
看图可知,由于蜜蜂每次只能从前1个蜂房前2个蜂房过来,那么f(n)=f(n-2)+f(n-1)。这部就是一个菲波拉契数列吗?就是一个递推问题?
可是,开始时候,蜜蜂是在第1个蜂房,所以数列的开始几项会有所不同。
f(1)=0,因为蜜蜂开始在第1个蜂房;
f(2)=1,蜜蜂只能从第1个蜂房来到第2个蜂房;
f(3)=2,蜜蜂可以从第1个蜂房过来,也可以从第2个蜂房过来;
f(n)=f(n-2)+f(n-1),n>3。
有了以上的递推式,一切几乎就解决了。
还需要考虑的一点是,蜜蜂从a蜂房到b蜂房的各种可能路径,相当于从第1蜂房到第b-a+1蜂房。
另外一点是,还是先打表吧,以防万一。
程序说明:(略)。
AC的C语言程序如下:
/* HDU2044 一只小蜜蜂... */
#include <stdio.h>
#define MAXN 50
typedef unsigned long long ULL;
ULL fn[MAXN+1];
void setfn()
{
int i;
fn[0] = 0;
fn[1] = 0;
fn[2] = 1;
fn[3] = 2;
for(i=4; i<=MAXN; i++)
fn[i] = fn[i-2] + fn[i-1];
}
int main(void)
{
int n, a, b;
// 先打表(以防万一测试集合大)
setfn();
scanf("%d", &n);
while(n--) {
// 读入a和b
scanf("%d%d", &a, &b);
// 输出结果
printf("%lld\n", fn[b - a + 1]);
}
return 0;
}