汉诺塔VI
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3193 Accepted Submission(s): 2353
Problem Description
n个盘子的汉诺塔问题的最少移动次数是2^n-1,即在移动过程中会产生2^n个系列。由于
发生错移产生的系列就增加了,这种错误是放错了柱子,并不会把大盘放到小盘上,即各柱
子从下往上的大小仍保持如下关系 :
n=m+p+q
a1>a2>...>am
b1>b2>...>bp
c1>c2>...>cq
计算所有会产生的系列总数.
发生错移产生的系列就增加了,这种错误是放错了柱子,并不会把大盘放到小盘上,即各柱
子从下往上的大小仍保持如下关系 :
n=m+p+q
a1>a2>...>am
b1>b2>...>bp
c1>c2>...>cq
计算所有会产生的系列总数.
Input
包含多组数据,首先输入T,表示有T组数据.每个数据一行,是盘子的数
目N<30.
目N<30.
Output
对于每组数据,输出移动过程中所有会产生的系列总数。
Sample Input
3 1 3 29
Sample Output
3 27 68630377364883
Author
Zhousc@ECJTU
Source
问题链接:HDU1996 汉诺塔VI。
问题简述:参见上述链接。
问题分析:本题实际上是计算3^n。编程中需要注意输出格式。
程序说明:(略)
AC的C语言程序如下:
/* HDU1996 汉诺塔VI */
#include<stdio.h>
#include<math.h>
int main (void)
{
int t, n;
scanf("%d",&t);
while(t--)
{
scanf("%d", &n);
printf("%.lf\n", pow(3, n));
}
return 0;
}