试题编号: | 201409-2 |
试题名称: | 画图 |
时间限制: | 1.0s |
内存限制: | 256.0MB |
问题描述: |
问题描述
在一个定义了直角坐标系的纸上,画一个(x1,y1)到(x2,y2)的矩形指将横坐标范围从x1到x2,纵坐标范围从y1到y2之间的区域涂上颜色。
下图给出了一个画了两个矩形的例子。第一个矩形是(1,1) 到(4, 4),用绿色和紫色表示。第二个矩形是(2, 3)到(6, 5),用蓝色和紫色表示。图中,一共有15个单位的面积被涂上颜色,其中紫色部分被涂了两次,但在计算面积时只计算一次。在实际的涂色过程中,所有的矩形都涂成统一的颜色,图中显示不同颜色仅为说明方便。 给出所有要画的矩形,请问总共有多少个单位的面积被涂上颜色。
输入格式
输入的第一行包含一个整数n,表示要画的矩形的个数。
接下来n行,每行4个非负整数,分别表示要画的矩形的左下角的横坐标与纵坐标,以及右上角的横坐标与纵坐标。
输出格式
输出一个整数,表示有多少个单位的面积被涂上颜色。
样例输入
2
1 1 4 4 2 3 6 5
样例输出
15
评测用例规模与约定
1<=n<=100,0<=横坐标、纵坐标<=100。
|
问题链接:CCF201409试题。
问题描述:
输入n个矩形的左下角的横坐标与纵坐标,以及右上角的横坐标与纵坐标,求这些矩形所覆盖的面积。
问题分析:
若干个矩形叠加在一起,要算出其面积,看起来有点复杂。关键是其面积是由若干正方形组成的。计算的方法有两种:
1.将各个正方形标记出来,然后再统计计算其面积。
2.将各个正方形面积累加起来,然后去掉重叠部分。哪些部分重叠也需要进行标记后才能判定。
程序说明:
本程序采用第2种方法进行计算。
提交后得100分的C++语言程序如下:
/* CCF201409-2 画图 */
#include <iostream>
#include <cstring>
using namespace std;
const int N = 100;
bool flag[N+1][N+1];
int main()
{
int n, x1, y1, x2, y2, sum=0;
// 变量初始化
memset(flag, false, sizeof(flag));
// 输入数据,计算处理
cin >> n;
for(int i=1; i<=n; i++) {
// 输入数据
cin >> x1 >> y1 >> x2 >> y2;
// 累加面积
sum += (x2 - x1) * (y2 - y1);
// 标记和去除重叠部分
for(int i=x1; i<x2; i++)
for(int j=y1; j<y2; j++) {
if(flag[i][j])
sum--;
flag[i][j] = true;
}
}
// 输出结果
cout << sum << endl;
return 0;
}