小希的迷宫Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 57115 Accepted Submission(s): 17945
Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
![]()
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过1000000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
Sample Output
Yes Yes No
Author
Gardon
Source
|
问题链接:HDU1272 小希的迷宫。
问题简述:
若干组测试用例,最后两个-1(-1 -1)结束。每个测试用例包括若干组边(两个整数组成),最后两个0(0 0)结束。判定每个测试用例是否为一棵树。
问题分析:
判定无向图图是否连通并且为一棵树的问题。可以用那些边构造一个并查集,构建并查集时,如果无向边的两个结点的根相同则不是一棵树,即形成环路。
注意点:结点虽然用整数表示,然而是随意的,而且范围不定。判定结点是否都相互连通用统计的方法实现。
程序说明:
程序中,假定最大的结点不超过100000。
代码不够简洁,又写了一个简洁版。
AC的C++语言程序(简洁版)如下:
/* HDU1272 小希的迷宫 */
#include <iostream>
#include <stdio.h>
using namespace std;
const int N = 100000;
int f[N + 1], cnt;
bool visited[N + 1];
bool nocircleflag; // 环标记
int edgecount; // 边计数
void UFInit(int n)
{
nocircleflag = true;
edgecount = 0;
for(int i = 0; i <=n; i++) {
f[i] = i;
visited[i] = false;
}
}
int Find(int a) {
return a == f[a] ? a : f[a] = Find(f[a]);
}
void Union(int a, int b)
{
edgecount++;
visited[a] = true;
visited[b] = true;
a = Find(a);
b = Find(b);
if (a != b) {
f[a] = b;
} else
nocircleflag = false;
}
// 连通性判定
bool isconnect() {
int cnt = 0;
for( int i = 0 ; i<= N ; i++ )
if(visited[i])
cnt++;
return (cnt == edgecount + 1);
}
int main()
{
int src, dest;
for(;;) {
scanf("%d%d", &src, &dest);
if(src==-1 && dest==-1)
break;
if(src==0 && dest==0) {
//为空树
printf("Yes\n");
} else {
UFInit(N);
Union(src, dest);
for(;;) {
scanf("%d%d", &src, &dest);
if( src==0 && dest==0 )
break;
Union(src, dest);
}
if(nocircleflag && isconnect())
printf("Yes\n");
else
printf("No\n");
}
}
return 0;
}
/* HDU1272 小希的迷宫 */
#include <iostream>
#include <cstdio>
using namespace std;
const int MAXN = 100000;
// 并查集
class UF {
private:
int v[MAXN+1];
bool visited[MAXN+1];
int length;
bool nocircleflag; // 环标记
int edgecount; // 边计数
public:
UF(int n) {
length = n;
}
// 压缩
int Find(int x) {
if(x == v[x])
return x;
else
return v[x] = Find(v[x]);
}
bool Union(int x, int y) {
edgecount++;
visited[x] = true;
visited[y] = true;
x = Find(x);
y = Find(y);
if(x == y) {
nocircleflag = false;
return false;
} else {
v[x] = y;
return true;
}
}
// 连通性判定
bool isconnect() {
int rootcount = 0;
for( int i=0 ; i<=MAXN ; i++ )
if(visited[i])
rootcount++;
return (rootcount == edgecount + 1);
}
// 环路判定
inline bool nocircle() {
return nocircleflag;
}
void init() {
nocircleflag = true;
edgecount = 0;
for(int i=0; i<=length; i++)
v[i] = i, visited[i] = false;
}
};
int main()
{
int src, dest;
UF uf(MAXN);
for(;;) {
uf.init();
scanf("%d%d", &src, &dest);
if(src==-1 && dest==-1)
break;
if(src==0 && dest==0) {
//为空树
printf("Yes\n");
} else {
uf.Union(src, dest);
for(;;) {
scanf("%d%d", &src, &dest);
if( src==0 && dest==0 )
break;
uf.Union(src, dest);
}
if(uf.nocircle() && uf.isconnect())
printf("Yes\n");
else
printf("No\n");
}
}
return 0;
}