用于多个比较的方差分析(ANOVA)

Source: http://www.r-bloggers.com/analysis-of-variance-anova-for-multiple-comparisons/

 

用于多个比较的方差分析(ANOVA:Analysis of variance)

ANOVA模型能用于比较多个群组之间的均值,这里使用了参数(parametric)的方法,也就是假设这些群组符合Gaussian分布。以下为例子:

----------------------------------------------------

超市连锁店的经理想看看4个店面的耗电量(千瓦)是否相等。他在每个月底收集数据,持续了6个月,结果如下:

Store A: 65, 48, 66, 75, 70, 55
Store B: 64, 44, 70, 70, 68, 59
Store C: 60, 50, 65, 69, 69, 57
Store D: 62, 46, 68, 72, 67, 56

为了使用ANOVA来验证,我们必须首先验证homoskedasticity,也就是方差的同质性检验。R软件提供了两种检验方法:Bartlett检验,和Fligner-Killeen检验。

---------------------------------------------------

我们先看Bartlett检验。首先我们创建4个向量,然后再组合成一个向量:

a = c(65, 48, 66, 75, 70, 55)
b = c(64, 44, 70, 70, 68, 59)
c = c(60, 50, 65, 69, 69, 57)
d = c(62, 46, 68, 72, 67, 56)
dati = c(a, b, c, d)

另外我们再创建一个对应用于标示dati分组的4个水平的factor:

groups = factor(rep(letters[1:4], each = 6))

这样我们就可以进行Bartlett test了:

bartlett.test(dati, groups)

        Bartlett test of homogeneity of variances

data:  dati and groups 
Bartlett's K-squared = 0.4822, df = 3, p-value = 0.9228

这个函数得到了统计检验的值(K squared)和p-value。因为p-value > 0.05,所以我们可以说这些组的方差是同质的。另一方面,我们也可以比较Barlett的K-squared和查表的chi-square值,使用函数qchisq,其输入包括alpha值和自由度

qchisq(0.950, 3)
[1] 7.814728

显然,这里的chi-squared 大于上面计算的Bartlett的K-squared,因此我们接受null hypothesis H0,即方差都是同质的。

-------------------------------------------------------------------

现在我们试着用Fligner-Killeen test来检测同质性。调用函数的方法和过程都类似:

a = c(65, 48, 66, 75, 70, 55)
b = c(64, 44, 70, 70, 68, 59)
c = c(60, 50, 65, 69, 69, 57)
d = c(62, 46, 68, 72, 67, 56)

dati = c(a, b, c, d)

groups = factor(rep(letters[1:4], each = 6))

fligner.test(dati, groups)

        Fligner-Killeen test of homogeneity of variances

data:  dati and groups 
Fligner-Killeen:med chi-squared = 0.1316, df = 3, p-value = 0.9878

这里的结论也与Bartlett test类似。

----------------------------------------------------------------------------------

已验证了4个群组的同质性,我们就可以来处理ANOVA模型了。首先拟合模型:

fit = lm(formula = dati ~ groups)

然后分析ANOVA模型:

anova (fit)

Analysis of Variance Table

Response: dati
          Df  Sum Sq Mean Sq F value Pr(>F)
groups     3    8.46    2.82  0.0327 0.9918
Residuals 20 1726.50   86.33 

函数的输出为经典的ANOVA表,数据如下:

  • Df = degree of freedom,自由度
  • Sum Sq = deviance (within groups, and residual),总方差和(分别有groups和residual的)
  • Mean Sq = variance (within groups, and residual),平均方差和(分别有groups和residual的)
  • F value = the value of the Fisher statistic test, so computed (variance within groups) / (variance residual),统计检验的值
  • Pr(>F) = p-value

因为p-value大于0.05,我们接受null hypothesis H0,即4个样本的均值统计相等。我们也可以比较计算的F-vaue和查表的F-value:

qf(0.950, 20, 3)
[1] 8.66019


查表的F-value大于之前计算的F-value,因此我们接受null hypothesis。

<think>好的,用户想要寻找实现方差分析ANOVA)的Python或R代码。首先,我需要回忆一下ANOVA的基本概念以及常用的库。ANOVA用于比较多个组的均值是否存在显著差异,通常分为单因素和多因素分析。 根据用户提供的引用,特别是引用[1]提到了使用Python进行双向ANOVA,引用[4]和[5]涉及R中的逻辑回归和聚类中的WCSS,可能与ANOVA相关。需要确认这些引用中是否有直接相关的代码示例。 首先,检查引用[1],其中提到使用Python进行双向ANOVA,但示例代码可能没有直接给出。可能需要补充Python中使用statsmodels或scipy的实现方法。例如,使用statsmodels的anova_lm函数,或者使用scipy的f_oneway函数进行单因素ANOVA。 然后,引用[4]展示了R中的逻辑回归代码,虽然不直接相关,但可能用户对R的代码结构感兴趣。引用[5]提到了WCSS,这和聚类有关,但ANOVA通常用于组间比较,可能需要区分。 接下来,用户可能需要Python和R两种语言的示例。需要确保代码语法正确,比如在Python中使用正确的库函数,在R中正确调用anova函数或相关包如car。 另外,用户的问题可能涉及到单因素和双因素ANOVA,需要分别给出例子。例如,在Python中使用scipy的f_oneway进行单因素,使用statsmodels的ols模型进行双因素。在R中,可以使用aov函数,或者lm配合anova。 需要注意数据准备的步骤,比如如何构建数据框,如何指定因变量和自变量。例如,在Python中使用pandas创建DataFrame,然后进行模型拟合。在R中可能需要使用公式语法,如y ~ group。 还要考虑是否需要检查假设条件,如正态性、方差齐性,并给出相应的检验方法,如Shapiro-Wilk检验或Levene检验,这可能增加代码的完整性。 最后,根据用户提供的引用,可能需要引用相关的文献或资料,比如引用[1]中的双向ANOVA方法,确保回答有据可依。同时,生成相关问题,如ANOVA的前提假设、结果解读方法等,帮助用户进一步学习。</think>### 方差分析ANOVA)的代码实现 方差分析用于比较多个组之间的均值差异是否显著。以下是Python和R的实现示例: --- #### **Python实现** 1. **单因素ANOVA**(使用`scipy`库) ```python from scipy import stats import pandas as pd # 示例数据:三组数据 group1 = [25, 30, 28, 35, 27] group2 = [19, 23, 22, 18, 25] group3 = [15, 20, 17, 16, 18] # 执行单因素ANOVA f_stat, p_value = stats.f_oneway(group1, group2, group3) print(f"F-statistic: {f_stat}, p-value: {p_value}") ``` **输出结果**:若$p<0.05$,则拒绝原假设,说明至少两组均值存在显著差异[^1]。 2. **双因素ANOVA**(使用`statsmodels`库) ```python import statsmodels.api as sm from statsmodels.formula.api import ols # 创建示例数据框 data = pd.DataFrame({ 'value': [25, 30, 28, 35, 27, 19, 23, 22, 18, 25, 15, 20, 17, 16, 18], 'group': ['A']*5 + ['B']*5 + ['C']*5, 'factor': ['X', 'Y', 'X', 'Y', 'X', 'Y', 'X', 'Y', 'X', 'Y', 'X', 'Y', 'X', 'Y', 'X'] }) # 拟合模型并生成ANOVA表 model = ols('value ~ C(group) + C(factor) + C(group):C(factor)', data=data).fit() anova_table = sm.stats.anova_lm(model, typ=2) print(anova_table) ``` **输出**:分析主效应和交互作用的显著性[^1]。 --- #### **R实现** 1. **单因素ANOVA** ```R # 示例数据 group <- factor(c(rep("A",5), rep("B",5), rep("C",5))) value <- c(25, 30, 28, 35, 27, 19, 23, 22, 18, 25, 15, 20, 17, 16, 18) # 执行ANOVA result <- aov(value ~ group) summary(result) # 事后检验(Tukey HSD) TukeyHSD(result) ``` 2. **双因素ANOVA** ```R # 示例数据 data <- data.frame( value = c(25, 30, 28, 35, 27, 19, 23, 22, 18, 25, 15, 20, 17, 16, 18), group = rep(c("A", "B", "C"), each=5), factor = rep(c("X", "Y"), length.out=15) ) # 拟合模型 model <- aov(value ~ group * factor, data=data) summary(model) ``` --- #### **关键假设检验** - **正态性检验**(Shapiro-Wilk) Python: `stats.shapiro(residuals)` R: `shapiro.test(residuals(model))` - **方差齐性检验**(Levene检验) Python: `stats.levene(group1, group2, group3)` R: `car::leveneTest(value ~ group, data=data)` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值