- 博客(1736)
- 资源 (149)
- 收藏
- 关注
原创 如何用Tushare获取金融数据
Tushare提供以下股票行情数据:日线行情、周线行情、月线行情、复权行情、复权因子、每日停复牌信息、每日指标、个股资金流向、每日涨跌停价格、沪深港通资金流向、沪深股通十大成交股、港股通十大成交股、港股通每日成交统计、港股通每月成交统计等。Tushare提供的市场参考数据包括:融资融券交易汇总、融资融券交易明细、融资融券标的、前十大股东、前十大流通股东、龙虎榜每日明细、龙虎榜机构明细、股权质押统计数据、股权质押明细、股票回购、限售股解禁、大宗交易、股东人数、股东增减持等。
2024-08-10 15:27:53 1032 1
原创 什么是提示工程师
作为一个提示工程师,创建文本生成任务的提示模板时,主要任务是创建一个具有指导意义的上下文或起始文本,引导模型生成预期的内容。作为一个提示工程师,创建摘要生成任务的提示模板需要提供足够的指示,让模型明白需要从给定的文本中提取主要信息并生成简洁的摘要。作为一个提示工程师,创建问题回答任务的提示模板需要提供清晰的问题及相关上下文,以指导模型产生预期的答案。但这只是一种基本的模板,更复杂的翻译任务中,可能需要进一步优化模板,如对话翻译、古诗词翻译等都需要对模板进行针对性的调整,以便模型能产出更符合期望的结果。
2024-08-09 06:44:20 835
原创 神经网络-RoBERTa
为了避免在每轮训练中每个训练实例都使用相同的mask,训练数据被复制了10倍,这样在每个40个训练周期的训练中,每个序列都以10种不同的方式被masked。然而,当建模大量多样化的语料库时,如本工作中考虑的语料库,Unicode字符可以占据这个词汇量的一个相当大的部分。遵循Radford等人(2019)的方法,我们考虑使用一个更大的字节级BPE词汇表来训练BERT,该词汇表包含50K子词单位,而无需对输入进行额外的预处理或分词。这些子词不是预先定义的单词,而是通过分析训练语料库中的统计数据自动提取的。
2024-08-09 06:40:06 1238
原创 AutoDis 一文小结
AutoDis 一文小结这篇文章介绍了AutoDis,一个创新的框架,旨在解决推荐系统中点击率(CTR)预测的一个关键问题:如何有效地嵌入数值特征。在现有的CTR预测模型中,数值特征的嵌入通常受限于固定数量的参数,导致模型无法充分捕捉特征之间的复杂交互,或者依赖于无法与模型目标共同优化的硬离散化规则。要解决的问题: 现有模型通常忽视了嵌入模块在处理数值特征时的重要性。 数值特征的传统嵌入方法(如规范化和离散化)存在性能瓶颈,例如低容量问题、两阶段问题(TPP)、相似值
2024-08-09 06:38:29 668
原创 大模型调用外部工具的实战指南
未来,LangChain将继续提供更多强大的组件和工具,支持更多类型的数据源和模型,以满足开发者对复杂LLM应用的需求。需要注意的是,LangChain本身是一个框架,它提供了一系列的工具和组件来支持上述流程中的各个环节,但具体的实现细节会根据项目的具体需求和所使用的技术栈而有所不同。LangChain可以理解为:在一个流程的整个生命周期中,管理和优化prompt,根据prompt使用不同的代理进行不同的动作,在这期间使用内存管理中间的一些状态,然后使用链将不同代理之间进行连接起来,最终形成一个闭环。
2024-08-09 06:36:03 703
原创 大数据技术与应用 课程设计 基于 Spark的出租房屋大数据分析
类型2-面积适中,租金适中,适合合租、一家人租住;在实现这个项目的过程中,我认为最重要的是对数据的预处理,通过对数据进行清洗和去重,可以保证得到准确的分析结果。此次项目是分析广东七地二手房的房子情况,数据是来自链家的二手房,此 次的爬取的数据是2023年5月最新的数据,数据包含了十个字段,都是爬取后在excel做了简单的数据预处理,最后导入虚拟机。通过雷达图可以清楚的分析在相同的环境下,深圳与佛山两地二手房的价格差别,本次选取租房中的房间数量、平均面积、均价、楼层层数、客厅数量五个指标进行可视化。
2024-07-04 07:52:07 950 1
原创 R语言 Markowitz均值-方差模型(Mean-Variance Model)
该模型通过考虑资产的预期收益和风险(通常用方差或标准差表示),帮助投资者找到最优的资产组合。这个模型帮助我们在考虑风险和收益的情况下,找到最优的资产组合。您可以根据自己的需求调整股票列表和时间范围,进一步优化和测试您的投资组合。Markowitz模型的目标是找到一组权重 $\mathbf{w} ),使得在给定风险水平下,投资组合的预期收益最大化,或者在给定预期收益下,投资组合的风险最小化。投资者可以根据自己的风险偏好和收益目标,通过模型找到最优的资产配置策略。为投资组合的权重向量,为资产的预期收益向量,
2024-06-17 08:29:34 335
原创 基于Tushare数据的最小风险组合与最大夏普比率组合分析
我们选择了5只股票,分别是中国银行(601988.SH)、贵州茅台(600519.SH)、海通证券(600837.SH)、上海机场(600009.SH)和宁德时代(300750.SZ),数据时间范围为2020年1月1日至2024年6月1日。通过上述分析,我们得出了最小风险组合和最大夏普比率组合的预期收益率,并对其权重分布进行了可视化展示。本次分析展示了如何利用Tushare平台获取数据,并使用R语言进行数据处理和投资组合优化,为实际投资决策提供了理论依据和数据支持。然后,对数据进行清理以确保数据完整性。
2024-06-17 08:10:58 211
原创 R语言 计算最小化风险的最优权重
在金融市场中,如何优化投资组合以最大化收益并最小化风险是一个重要的研究课题。本文将展示如何使用 R 语言结合 Tushare 数据接口获取股票数据,并通过现代投资组合理论计算最优投资组合。具体来说,我们将使用五只股票的数据,并基于这些数据计算最小化风险的最优权重。
2024-06-17 07:49:49 149
原创 如何高效阅读人工智能研究论文
导读: 在刚迈入科研时,人人都说读论文很重要,但是很少有人能完整地教你应该如何读论文。论文不仅揭示了行业的最新进展和趋势,而且为我们提供了改进技术和解决复杂问题的思路。然而,由于学术论文常常包含密集的技术细节和专业术语,新手可能会觉得门槛较高。
2024-06-13 08:16:42 1116
原创 GPT-4o:全新AI技术的深度解析
人工智能(AI)技术日新月异,最近,OpenAI发布了最新的语言模型——GPT-4o。作为GPT-4的进化版本,GPT-4o在多个方面展现了其独特的优势和显著的提升。本篇文章将从多个角度对GPT-4o进行评价,包括版本间的对比分析、GPT-4o的技术能力、应用场景以及个人整体感受,旨在帮助读者全面了解这一新兴技术。
2024-06-11 06:21:21 646
原创 搞定99%的R包的安装报错
此处解释一下这段代码的意思,就是如果没有pacman包,就自动安装,之后调用专门用来安装包的pacman包,利用p_load函数直接调用包,如果需要的包曾经没有安装过,这个函数会自动安装后加载。每次开始学习R语言,最困难的一步就是下载R语言和Rstudio,第二步就是迷失在安装运行所需包的报错之中,本次就提供最便捷的安装包的方法,以及一些常规方法不能成功安装的包的安装方案,一文搞定99%的困难。首先,所有的教材或网站上,都会告诉你,开始都要运行library(“ggplot2”)这条语句,然后就会被告知。
2024-06-10 14:05:05 333
原创 一、方差分析(45分) 冬小麦不同水分条件下的产量试验进行了不同水分处理,为完全随机设计,试进行方差分析(wh.csv)。 (1)是否满足方差分析的前提假设?(提示:正态检验用shapiro.test
(3)分别分析不同因变量(NEE、RECO和GPP)与Ta、VPD、Pa、Ws、Rn、CO2、SWC、ET的多重非线性检验,在此基础上,采用逐步回归和AIC法进行多元线性回归分析,并解释结果(15分)(4)NEE与Ta、VPD、Pa、Ws、Rn、CO2、SWC、ET进行通径分析,并列出通径分析表格或者画出通径分析图(R语言中的agricolae包)(15分)方差分析结果表明,在不同水分处理下的产量存在显著差异(ANOVA, F = 55, p < 0.001),这意味着水分条件对产量有着显著影响。
2024-06-09 17:32:06 98
原创 南 京 农 业 大 学 试 题 纸 附表(rape.csv)是25个油菜材料,测得每个材料的千粒重、亚油酸等的含量. (1) 对物质含量的八个指标作主成分分析,画出碎石图和主成分得分图; (2) 选
(1)请用n1
2024-06-09 17:27:38 257
原创 2023 – 2024学年第1学期2021级 R语言考试试题(机考)
吸收量的标准差也显示了各组数据的离散程度。四、将father.son.txt文件导入为数据集father.son,该数据集收集了1078组父亲和儿子的身高信息,使用该数据集绘制儿子身高sheight(y)对父亲身高feight(x)的散点图,使用lm函数完成简单线性回归建立儿子身高作为父亲身高的函数的模型,并将使用abline函数将拟合线绘制到散点图上,注意在图形上生成合适的坐标轴标签和标题。(1)将给定的文本数据文件gdp.txt导入到R中(文件中的分隔符是逗号(,),第一行是变量的名称)。
2024-06-09 17:23:16 148
原创 试通过以下方法计算万科A(000002.SZ)在下一交易日,有95%的概率,收盘价对数收益率不低于多少。假设给定数据窗口为2018.01.01-2019.01.01。
( 40分 )试通过以下方法计算万科A(000002.SZ)在下一交易日,有95%的概率,收盘价对数收益率不低于多少。假设给定数据窗口为2018.01.01-2019.01.01。。
2024-06-09 17:16:01 65
原创 假想某只债券在上海证券交易所交易,其面值为100元,票面利率为4%,每半年支付一次利息,2025年4月11日到期。,并假设在该期间债券的收益率维持在3%的水平不变。
( 100分 )假想某只债券在上海证券交易所交易,其面值为100元,票面利率为4%,每半年支付一次利息,2025年4月11日到期。,并假设在该期间债券的收益率维持在3%的水平不变。(1)编写函数计算该债券于2019年11月13日至2022年11月13日期间每天的净价、全价和应计利息的变化,并以数据框的形式给出。(2)并用ggplot2画出债券价、全价和应计利息的变化。加载必要的库:定义计算债券净价、全价和应计利息的函数 :参数定义:生成日期序列:计算价格:绘图:显示数据框:运行上述代码后,您将
2024-06-09 16:59:30 90
原创 基于R语言的微博金融数据分析
例如,2023年3月1日的开盘价是21.34美元,最高价是21.48美元,最低价是18.60美元,收盘价是19.12美元,成交量是2625400股,调整后的收盘价是17.97469美元。可以看到,到了2024年2月29日,微博的开盘价是9.17美元,最高价是9.41美元,最低价是9.06美元,收盘价是9.12美元,成交量是10622900股,调整后的收盘价是9.12美元。结果表明,所有的字段(开盘价、最高价、最低价、收盘价、成交量和调整后的收盘价)中都没有缺失值,这意味着我们获取的数据是完整的,没有遗漏。
2024-06-09 16:52:12 127
原创 估计资产β系数(R 代码实现)
在股票市场中,资产的β系数(Beta Coefficient)是一个非常重要的量化指标,用于衡量一个资产或投资组合相对于整个市场的波动性。资产的β系数表示资产回报的敏感性,相对于市场回报的变动。
2024-06-09 16:45:41 74
原创 估计资产β系数(R 代码实现)
在股票市场中,资产的β系数(Beta Coefficient)是一个非常重要的量化指标,用于衡量一个资产或投资组合相对于整个市场的波动性。资产的β系数表示资产回报的敏感性,相对于市场回报的变动。
2024-06-09 14:20:27 70
原创 Merton模型的R语言实现
Merton模型是一种结合了期权定价理论和信用风险评估的模型,由Robert C. Merton在1974年提出。它是用来评估公司违约概率的一种方法,将公司债务视作一种欧式看跌期权。在这个模型中,如果公司的资产价值在到期时低于债务水平,公司将违约。
2024-06-09 14:18:42 254
原创 历史分布VaR的R语言实现
历史分布VaR的实现依赖于直接使用历史数据来模拟未来可能的市场条件,从而评估潜在的风险水平。这种方法不需要对收益率分布进行任何假设,因此非常适用于金融数据,尤其是在市场条件复杂或数据显示出显著的非正态分布特征时。
2024-06-09 14:16:56 92
原创 正态分布VaR的R语言实现
正态分布下的VaR(Value at Risk)计算是建立在资产收益率服从正态分布的假设基础上的。在这种方法中,你将需要收益率的均值和标准差来确定VaR。这种方法的数学公式和步骤相对简单,适用于那些收益率分布近似正态的场合。接着,我们计算这些收益率的均值和标准差,并结合置信水平来确定正态分布的分位数,最终计算出VaR。VaR的计算基于正态分布的性质。函数获取苹果公司(AAPL)一年的股价数据。在这段代码中,我们首先使用。
2024-06-09 14:13:26 91
原创 历史模拟法计算VaR
在这种方法中,你首先需要计算出每个交易日的收益率,然后将这些收益率排序。置信水平通常选择95%或99%,这意味着你需要找到所有排序收益率中相应的5%或1%位置的值,这个值就是你的VaR。此代码示例将展示如何使用历史数据来确定在95%的置信水平下的VaR,即有95%的把握认为实际损失不会超过这个计算出的VaR值。历史模拟法的核心在于使用历史收益率数据来预测未来潜在的损失。, 你需要找到所有排序收益率中的第5百分位点。表示在时间 (t) 的收益率,
2024-06-09 14:10:57 322
原创 分层抽样分析:使用R语言计算方差、置信区间和设计效应
方差是度量统计数据分散性的一个指标。在抽样中,方差用于衡量样本估计的可靠性;方差越小,估计越可靠。
2024-05-27 08:26:04 270
原创 rstanarm中的stan_glmer
stan_glmer函数是rstanarm包提供的,用于拟合贝叶斯广义线性混合效应模型(GLMM)。这类模型非常适用于处理具有层次结构或分组结构的数据,例如,数据中的观察值可能是分层的(如学生嵌套在学校中)、重复测量的(如同一对象在不同时间点的测量)或有其他类型的非独立结构。stan_glmer。
2024-03-29 08:35:39 166
原创 生存分析R代码大全
因为无法在短时间内评价慢性病患者的预后,所以通常情况下不会简单地采用治愈率、病死率等指标,而是对患者进行随访,分析一定的时间之后患者生存或死亡的情况,这种将事件的结果和出现这一结果所经历的时间结合起来分析的方法,称为生存分析 (Survival Analysis)。下面,对生存分析中常用到的代码进行了汇总,参考的文章已经附上链接,可以直接回溯到原文。如何进行生存数据的收集和整理,有不少人存在疑惑,下面这张图给出了非常清晰明了的说明。#四、基线特征描述统计。#七、cox回归模型。#八、连续变量截断值。
2024-03-27 08:29:00 314
原创 解决R语言ggplot2包输出带中文字体的矢量图时的乱码问题
这种情况下的字体样式未做更改,因此原图中的字体显示风格不会变,但由于文字被转为图形了,无法再通过pdf编辑工具(例如AI、福昕阅读器等)进行文字编辑。不过由于字体样式更改了,原图中的字体显示风格也会变,但好在文字可以被pdf编辑工具识别(),后续在这些工具中统一调整即可。众所周知,使用R语言ggplot2包绘图时,如果图中存在中文字体的情况,输出pdf矢量图时会乱码,如下所示的这样。另一种方法是将图中中文字体轮廓化为图形后再输出为矢量图,这样就不受字体库的影响了。
2024-03-25 08:37:53 448
原创 考试 冬小麦不同水分条件下的产量试验进行了不同水分处理,为完全随机设计,试进行方差分析(wh.csv)。 (1)是否满足方差分析的前提假设?(提示:正态检验用shapiro.test,方差齐性检验
(3)分别分析不同因变量(NEE、RECO和GPP)与Ta、VPD、Pa、Ws、Rn、CO2、SWC、ET的多重非线性检验,在此基础上,采用逐步回归和AIC法进行多元线性回归分析,并解释结果(15分)(4)NEE与Ta、VPD、Pa、Ws、Rn、CO2、SWC、ET进行通径分析,并列出通径分析表格或者画出通径分析图(R语言中的agricolae包)(15分)方差分析结果表明,在不同水分处理下的产量存在显著差异(ANOVA, F = 55, p < 0.001),这意味着水分条件对产量有着显著影响。
2024-02-26 07:35:52 90
原创 1. 請根據 bwght2.dta 資料檔,找出一用以解釋嬰兒出生時體重的樣本回歸模型:
bwght =β0+β1 npvis +β2 npviss q+β3 cigs +β4 male +β5 cigs ∗ male +u\text { bwght }=\beta_{0}+\beta_{1} \text { npvis }+\beta_{2} \text { npviss } q+\beta_{3} \text { cigs }+\beta_{4} \text { male }+\beta_{5} \text { cigs } * \text { male }+u bwght =β0+β
2024-02-19 19:21:31 451
原创 在使用R语言环境中如何进行正态性检验的保姆级教程
在这个例子中,我们使用了airway数据集中的gene列作为基因表达值,然后执行了Shapiro-Wilk正态性检验,查看基因表达值是否满足正态分布。在使用Shapiro-Wilk检验时,如果p-value小于设定的显著性水平(通常为0.05),我们会拒绝原假设,即认为数据不是来自正态分布。在正态性检验中,我们会使用Kolmogorov-Smirnov检验来比较样本的累积分布函数(CDF)与理论正态分布的CDF之间的差异。因此,对生物学数据进行正态性检验是必要的,以确保所应用的统计方法的准确性和可靠性。
2024-02-17 08:09:07 633
原创 R语言 QQ图 判断数据分布类型
在QQ图中,我们将待检验的数据按照从小到大的顺序排列,并计算出每个数据所在的分位数。然后,我们将这些分位数与理论分布的分位数进行比较,绘制得到一个散点图。如果数据近似服从理论分布,那么散点图中的数据点应当大致沿着一条直线分布。而如果数据不服从理论分布,那么散点图中的数据点会明显偏离直线。QQ图(Quantile-Quantile Plot)是一种可视化工具,用于检验数据是否服从某个理论分布。该图通常用于检验数据的正态性,也可以用于检验其他分布的偏离情况。
2024-02-17 07:08:18 240
原创 江汉大学2022 —— 2023 学年第1 学期试卷
3.(12分)财政数据.csv中是从1994年到2013年的财政数据,其中财政收入(y),社会从业人数(x1),在岗职工工资总额(x2),社会消费品零售总额(x3),城镇居民人均可支配收入(x4),城镇居民人均消费性支出(x5),年末总人口(x6),全社会固定资产投资额(x7),地区生产总值(x8),第一产业产值(x9),税收(x10),居民消费价格指数(x11);假设两稻种产量X,Y均服从正态分布,且方差相等。4)在gm11代码中修改原始值和预测值曲线的样式(点,线,颜色,线的样式,点的样式等等);
2024-02-16 21:45:03 92
原创 浙江越秀外国语学院2023-2024学年第一学期期末考试 《R语言与数据分析》试卷
根据检验结果,t 值为441.86,自由度为4644,p 值小于2.2e-16,这表明在显著性水平为0.05的情况下,英语笔试成绩的平均值与0存在显著性差异。根据观察,我注意到在分析我们学校的成绩数据时,听力和作文分数的直方图呈现出一种类似正态分布的形状,具有较为对称的特征,即数据点相对集中在中心并向两侧逐渐减少,呈现出典型的钟形曲线。比如,观察异常值对应的学生的其他信息,如是否有缺考或违纪记录,了解他们的考试情况是否与其他学生明显不同。6.筛选出国际商学院学生的英语成绩,并求出0%,10%,20%,…
2024-01-14 14:18:00 206
原创 R语言绘图—南丁格尔玫瑰图
南丁格尔玫瑰图是一种条形图的变形图,也被称为极坐标柱形图,普通的柱形图的坐标系是直角坐标系。该图形使用圆弧的半径长短来表示数据的大小,适合较多类别数据的比较。最近在撰写年度工作总结中使用了一部分,在此将代码分享,有需要者可复制使用!我们为图形添加发病数,最简单的就是通过geom_text函数实现。
2024-01-10 08:38:02 1147
原创 R 语言绘制 南丁格尔玫瑰图
是你的数据集,包含类别和频率列。你可以根据自己的数据调整代码以适应你的需求。南丁格尔玫瑰图(也称为极坐标条形图)可以使用R语言的。这段代码将创建一个简单的南丁格尔玫瑰图,其中。首先,确保你已经安装了。
2024-01-10 08:33:53 787
原创 用R语言分析股票数据:获取、可视化和比较收益率
当涉及分析金融数据时,R语言提供了一些功能强大的库,比如quantmod和ggplot2,可以帮助你获取、可视化和分析股票价格数据。下面是一个简单的教程,展示了如何使用这些库来获取股票数据并进行可视化分析。
2023-12-24 14:15:11 993
基于数据挖掘的森林火灾预测分析 有代码和报告
2024-08-10
机器故障数据集 故障预测分析
2024-08-07
当当网的书籍热销榜的排行榜
2024-08-07
小米su7微博文本数据
2024-08-07
各城市-能源消费数据(2000-2022年)
2024-08-07
历届奥运会奖牌数据(1896年-2022年)
2024-08-07
北京市二手房信息,用于数据分析、可视化
2024-08-07
全国热门旅游景点数据,用于数据分析、可视化
2024-08-07
2024年软科中国高校排行榜主榜数据
2024-07-28
高效AI五子棋对弈系统:基于启发式搜索与α-β剪枝
2024-07-24
综合自然语言处理工具:文本分析与生成系统 本项目旨在开发一款综合性的自然语言处理(NLP)工具,
2024-07-24
python CD销售趋势与消费行为洞察:基于CDNow数据的全面分析
2024-07-24
python智能信用卡欺诈数据分析,有ppt 基于大规模信用卡交易数据,通过建模过去的交易行为,以识别潜在的欺诈交易
2024-07-24
本项目旨在通过Python编程语言,从链家网爬取上海市二手房数据,并对其进行系统分析,以揭示上海二手房市场的动态和趋势
2024-07-24
该项目为实践 《python数据分析与挖掘实战》中的基本项目以及课程拓展
2024-07-23
第八届“泰迪杯”数据挖掘挑战赛C题:智慧政务中的文本挖掘应用
2024-07-23
本文利用随机森林模型对房价数据进行预处理, 基于 XGBoost对房价进行预测;通过对比实验,发现优化后的 XGBoost模型在
2024-07-23
2020年12月金牛区空气质量 报告 tableau报告
2024-07-23
吴恩达机器学习课后作业 使用python3+jupyternotebook实现的
2024-07-21
去除水下图像的蓝绿色色偏 恢复因光线衰减造成的亮度偏暗问题 还原海底生物和环境的自然色彩,提升图像的视觉质量 技术方法:
2024-07-21
本实验旨在实现一个基于协同过滤的电影推荐系统,以此来处理和分析大规模数据集
2024-07-21
项目描述:心脏病分析与预测
2024-07-21
计算机网络最终实验-聊天室 python
2024-07-21
python大学生小组作业:识别图片中的数学公式并计算其中的结果
2024-07-21
C语言贪吃蛇(控制台版)
2024-07-21
基于启发式搜索的 AI 五子棋 python
2024-07-21
项目围绕贵州茅台股票的历史开盘价数据展开,使用了长短期记忆网络(LSTM)模型来预测股票价格
2024-07-21
MATLAB 实验名称:语音信号降噪及特征提取可视化
2024-07-21
- 使用Matlab工具实现图像空间域和频率域的增强 实验报告
2024-07-21
Matlab图像压缩 利用Matlab进行图像的DCT压缩编码,进行不同压缩比的实验操作
2024-07-21
Matlab车牌监测与识别系统
2024-07-21
C++ 命令行超市收银系统
2024-07-20
matlab 可见光与红外光图像融合
2024-07-20
图形用户界面(GUI)实现人脸识别功能 OpenCV
2024-07-20
C++ Qt 学生宿舍管理系统
2024-07-20
上证50ETF基金数据分析及预测
2024-07-20
该项目为SWPU数据库原理及应用大作业,名为《西柚の外卖屋》,是一个基于Flask框架和MySQL数据库开发的在线外卖订餐系统
2024-07-20
该项目是一个基于Flask框架的用户管理模板,在Flask-Login的基础上添加了用户管理功能,旨在提供一个简洁且功能全面的用
2024-07-20
Flask集成的ERP系统Demo 该项目是一个基于Flask的Web版本ERP系统Demo,旨在实现企业信息管理的基础功能
2024-07-20
基于 Spark 的出租房屋大数据分析
2024-07-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人