01背包,完全背包,多重背包问题详细介绍以及源代码实现

背包问题

部分内容转载自:http://www.cppblog.com/tanky-woo/archive/2010/07/31/121803.html

背包的基本模型就是给你一个容量为V的背包

在一定的限制条件下放进最多(最少?)价值的东西

一般常用动态规划,存在以前状态向当前状态的一个转换,先求出之前状态的最优解,然后根据之前的状态得到现在状态的最优解。

常见的有三种限制条件。

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

比较三个题目,会发现不同点在于每种背包的数量,01背包是每种只有一件,完全背包是每种无限件,而多重背包是每种有限件。

01背包问题

题目 点击打开链接 来自hihocoder 01背包

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

把这个过程理解下:在前i件物品放进容量v的背包时,

它有两种情况:

第一种是第i件不放进去,这时所得价值为:f[i-1][v]

第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]

(第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。

对于每一个物品,我们都有放进去与不放进去两种选择.
Java源代码如下:
import java.util.*;
public class Package01 {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		while (in.hasNext()) {
			int n = in.nextInt();
			int weight = in.nextInt();
			int[] v = new int[n + 1];
			int[] w = new int[n + 1];
			int[][] res = new int[n + 1][weight + 1];
			for (int i = 1; i <=n; i++) {
				w[i] = in.nextInt();
				v[i] = in.nextInt();
			}
			for (int i = 1; i <=n; i++) {
				res[i][0] = 0;
			}
			for (int j = 0; j <=weight; j++) {
				res[0][j] = 0;
			}
			for(int i=1;i<=n;i++) {
				for (int k = 1; k <= weight; k++) {
					res[i][k] = res[i - 1][k];
						if (w[i] <= k) {
							if (v[i] + res[i-1][k - w[i]] > res[i-1][k])
							{
								res[i][k] = v[i] + res[i-1][k - w[i]];
							}
						
					}
				}
			}
			System.out.println(res[n][weight]);
		}
		in.close();
	}
}
我们想想看,能不能进行一下优化,其实我们并不需要保存每一层i的结果,我们只需要i-1的结果,那么我们可不可以优化成一维数组呢,要优化成一位数组也就意味着我们需要 反向遍历,这样就可以保证每次更新的时候都用的是上一层的状态。
具体的原代码如下:
import java.util.*;
public class Package0102 {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		while (in.hasNext()) {
			int n = in.nextInt();
			int weight = in.nextInt();
			int[] v = new int[n + 1];
			int[] w = new int[n + 1];
			int[] res = new int[weight + 1];
			for (int i = 1; i <=n; i++) {
				w[i] = in.nextInt();
				v[i] = in.nextInt();
			}
			
			for(int i=1;i<=n;i++) {
				for (int k = weight; k>=0; k--) {
						if (w[i] <= k) {
							if (v[i] + res[k - w[i]] > res[k])
							{
								res[k] = v[i] + res[k - w[i]];
							}
						
					}
				}
			}
			System.out.println(res[weight]);
		}
		in.close();
	}
}

完全背包

题目:http://hihocoder.com/problemset/problem/1043?sid=770394 hihocoder完全背包

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

完全背包按其思路仍然可以用一个二维数组来写出:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

同样可以转换成一维数组来表示:

伪代码如下:

for i=1..N
    for v=0..V
        f[v]=max{f[v],f[v-c[i]]+w[i]}

想必大家看出了和01背包的区别,这里的内循环是顺序的,而01背包是逆序的。
现在关键的是考虑:为何完全背包可以这么写?
在次我们先来回忆下,01背包逆序的原因?是为了是max中的两项是前一状态值,这就对了。
那么这里,我们顺序写,这里的max中的两项当然就是当前状态的值了,为何?
因为每种背包都是 无限 的。当我们把i从1到N循环时,f[v]表示容量为v在前i种背包时所得的价值,这里我们要添加的不是前一个背包,而是当前背包。所以我们要考虑的当然是当前状态。
对于二维数组,更新的时候为 res[i][j-w[k]]

优化:对于完全背包,如果w[i]<=w[j]&&v[i]>=v[j]那么j就可以删掉了 优化是o(N*N)对于随机生成的值哟花比较明显

多重背包

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}

这里同样转换为01背包。

对于http://poj.org/problem?id=2392

有一头奶牛要上太空,他有很多种石头,每种石头的高度是hi,但是不能放到ai之上的高度,并且这种石头有ci个
将这些石头叠加起来,问能够达到的最高高度。
解题思路:首先对数据进行升序排序,这样才是一个标准的多重背包的问题。为什么要排序?因为只有这样才能得到最优解,如果一开始就是高的在前面,那么后面有低的却不能选到,就直接选高的去了。这样是不能达到最优解的。

具体代码如下:

import java.util.*;
public class SpaceElevator {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int len=40010;
		while (in.hasNext()) {
			int n=in.nextInt();
			Node[] a=new Node[n];
			for(int i=0;i<n;i++)
			{
				a[i]=new Node(in.nextInt(),in.nextInt(),in.nextInt());
			}
			Arrays.sort(a);
			boolean[] dp=new boolean[len];
			dp[0]=true;
			int res=0;
			for(int i=0;i<n;i++)
			{
				int[] sum=new int[len];
				for(int j=a[i].h;j<=a[i].a;j++)
				{
					if(!dp[j]&&dp[j-a[i].h]&&sum[j-a[i].h]<a[i].c) //首先如果高度j已经达到的话,那么就不需要继续计算了
					{
						dp[j]=true;
						sum[j]=sum[j-a[i].h]+1;
						if(j>res) res=j;
					}
				}
			}
			System.out.println(res);
		}
	}
    public static class Node implements Comparable<Node>
    {
    	public int h;
    	public int a;
    	public int c;
    	Node(int h,int a,int c)
    	{
    		this.h=h;
    		this.a=a;
    		this.c=c;
    	}
		@Override
		public int compareTo(Node node) {
			if(this.a>node.a) return 1;
			else if(this.a<node.a) return -1;
			return 0;
			
		}
    }
}


总结:背包问题是很典型的动态规划问题,对于动态规划问题弄清楚转移方程,弄清楚相关的优化,每一层之间的关系,规划的流程。


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值