01背包问题

01背包问题

有N件物品和一个容量为V的背包, 第i件物品的费用是 c [ i ] c[i] c[i], 价值为 w [ i ] w[i] w[i], 求解哪些物品装入背包可使价值总和最大

这是最基础的背包问题, 特点是: 每种物品只有一件, 可以选择放或不放

用子问题定义状态: 即 f [ i ] [ v ] f[i][v] f[i][v]表示前 i i i件物品恰放入一个容量为v的背包可以获得的最大价值, 则其状态转换方程为 f [ i ] [ v ] = m a x { f [ i − 1 ] [ v ] , f [ i − 1 ] [ v − c [ i ] ] + w [ i ] } f[i][v]=max\{f[i-1][v], f[i-1][v-c[i]]+w[i]\} f[i][v]=max{f[i1][v],f[i1][vc[i]]+w[i]}

这个方程非常重要, 基本上所有跟背包相关的问题的方程都是由它衍生出来的.其详细解释如下:

  • 首先, 将前i件物品放入容量为v的背包中, 这个子问题若只考虑第i件物品的策略(放或不放), 那么就可以转化为一个只牵扯前 i − 1 i-1 i1件物品的问题.

  • 如果不放第i件物品, 问题转换为“前 i − 1 i-1 i1件物品放入剩下的容量额外 v v v的背包中”, 此时价值为 f [ i − 1 ] [ v ] f[i-1][v] f[i1][v]

  • 如果放第i件物品, 那么问题就转化为“前 i − 1 i-1 i1件放入剩下的容量为 v − c [ i ] v-c[i] vc[i]的背包中”, 此时能获得的最大价值就是 f [ i − 1 ] [ v − c [ i ] ] f[i-1][v-c[i]] f[i1][vc[i]]再加上通过放入第i件物品获得的最大价值 w [ i ] w[i] w[i].

优化空间复杂度

以上方法的时间和空间复杂度均为 O ( N ∗ V ) O(N*V) O(NV) 其中时间复杂度基本已经不能再优化了, 但空间复杂度却可以优化到 O ( V ) O(V) O(V).

先考虑 上面的基本思路如何实现, 肯定是有一个主循环 i = 1 ⋯ N i=1\cdots N i=1N, 每次算出来二维数组 f [ i ] [ 0 ⋯ V ] f[i][0\cdots V] f[i][0V]的所有值. 那么, 如果只用一个数组 f [ 0 ⋯ V ] f[0\cdots V] f[0V], 分析过程如下:

  • 能不能保证第i次循环结束后 f [ v ] f[v] f[v]中表示的就是我们定义的状态 f [ i ] [ v ] f[i][v] f[i][v]呢?

  • f [ i ] [ v ] f[i][v] f[i][v]是由 f [ i − 1 ] [ v ] f[i-1][v] f[i1][v] f [ i − 1 ] [ v − c [ i ] ] f[i-1][v-c[i]] f[i1][vc[i]]两个子问题递推而来, 能否保证在推 f [ i ] [ v ] f[i][v] f[i][v]时(即在第i词主循环中推 f [ v ] f[v] f[v]时)能够得到 f [ i − 1 ] [ v ] f[i-1][v] f[i1][v] f [ i − 1 ] [ v − c [ i ] ] f[i-1][v-c[i]] f[i1][vc[i]]的值,

事实上, 这要求在每次主循环中我们以 v = V ⋯ 0 v=V\cdots 0 v=V0的顺序推 f [ v ] f[v] f[v], 这样才能保证推 f [ v ] f[v] f[v] f [ v − c [ i ] ] f[v-c[i]] f[vc[i]]保存的是状态 f [ i − 1 ] [ v − c [ i ] ] f[i-1][v-c[i]] f[i1][vc[i]]的值, 伪代码如下:

for i=1..N:
    for v=V..0:
        f[v]=max{f[v], f[v-c[i]]+w[i]};

注意

  • 这个过程里的处理与前面给出的伪代码有所不同, 前面的示例程序写成 v = V ⋯ 0 v=V\cdots 0 v=V0是为了在程序中体现每个状态都按方程求解了, 避免不必要的思维复杂度, 而这里既然已经抽象成看作黑箱的过程了可以加入优化.

  • 费用为cost的物品不会影响状态 f [ 0 ⋯ c o s t − 1 ] f[0\cdots cost-1] f[0cost1], 这里是显然的.

有了这个过程之后, 01背包问题的伪代码可以这语言写

for i=1..N:
    ZeroOnePack(c[i], w[i]);

初始化的细节问题

我们看到的求最优解的背包问题题目中, 事实上有两种不太相同的问法. 有的题目要求“恰好装满背包”时候的最优解, 有的题目则并没有要求必须把背包填满. 一种区别 这两种问法的实现方法时在初始化的时候有所不同

  • 如果是第一种问法, 要求恰好装满背包, 那么在初始化除了 f [ 0 ] f[0] f[0]为0其他 f [ 1 ⋯ V ] f[1\cdots V] f[1V]均为 − ∞ -\infty , 这样就可以保证最终得到的 f [ N ] f[N] f[N]是一种恰好装满背包的最优解.

  • 如果没有要求必须把背包装满, 只是希望价格尽量大, 初始化时应该将 f [ 0 ⋯ V ] f[0\cdots V] f[0V]全部设为0

    为什么呢? 可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包的合法状态.

    • 如果要求背包恰好装满, 那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”, 其他的背包均没有合法的解, 属于未定义的状态,他们的值就为 − ∞ -\infty .

    • 如果背并不要求必须装满, 那么任何容量的背包都有一个合法的解“什么都不装”, 这个解的价值为0, 所以初始时状态的值也就为0了

这个小技巧完全可以推广到其它类型的背包问题

小结

01背包问题时最基本的背包问题, 包含了背包问题中设计状态、方程的最基本思想, 另外, 别的背包问题往往也可以转换为01背包问题求解

其中以下三点需要重点注意:

  • 如何得到上述思路

  • 状态转移方程的意义

  • 优化空间复杂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值