Android SlidingMenu 开源项目导入

本文介绍如何使用 SlidingMenu 开源库实现在 Android 应用中实现左右侧滑菜单的效果,并提供了详细的导入及配置步骤。

SlidingMenu 是github上有一个非常优秀的开源库,利用它可以很方便的实现左右侧滑菜单的效果,比如网易新闻客户端效果:











github地址:https://github.com/jfeinstein10/SlidingMenu


1、准备工作

下载SlidingMenu Demo,下载地址:https://github.com/jfeinstein10/SlidingMenu



SlidingMenu 需要ActionBarSherlock 开源库的支持,ActionBarSherlock 地址:https://github.com/JakeWharton/ActionBarSherlock。下载后解压




二、导入Eclipse

 File -> Import -> Existing Android Code Into WorkSpace 





点击 Next 



选择 ActionBarSherlock 目录,完成后点击 Finish 就完成了 ActionBarSherlock 导入。


同理导入 SlidingMenu lib 和  SlidingMenu sample 项目。


导入完成之后,如下图所示:




选中 ExampleListActivity 项目,鼠标右键Properties




ExampleListActivity在引用这两个library的时候可能会报Jar mismatch! Fix your dependencies :引用的工程和自身工程以来的jar包版本不一致导致的冲突。把它们统一成同一个jar文件就OK啦。

解决了上面的问题之后,还会出现  找不到getSupportActionBar等ActionBarSherLock的方法 错误。原因是使用ActionBarSherLock的Activity需继承于SherlockFragmentActivity,修改SlidingMenu library中的SlidingFragmentActivity,让它继承于SherlockFragmentActivity,如下:




SlidingMenu library 项目也需要引用ActionBarSherLock library 项目,否则会找不到 SherlockFragmentActivity 类,如下图:




然后重新编译SlidingMenu library 并导入,之前的错误就消失啦!


运行效果如下:










PS:如果按照上述步骤执行后还是有错误,请手动 Clean 一下工程,不行就重新启动一下Eclipse




下面附上本人导入编译成功后的项目

SlidingMenu完整版下载: http://download.csdn.net/detail/fx_sky/6719137





【源码免费下载链接】:https://renmaiwang.cn/s/i6otc 在本文中,我们将深入探讨如何使用Verilog语言实现CNN(卷积神经网络)并在FPGA上进行部署。这个项目特别关注卷积层、池化层和全连接层的硬件实现,利用Xilinx的Vivado 2019.2集成设计环境。同时,它还包含了测试平台(testbench),以便于验证和调试设计的功能正确性。**1. Verilog简介**Verilog是一种硬件描述语言,常用于数字电子系统的建模和设计。它允许工程师以一种结构化的方式描述电路行为,可以用于仿真、综合和验证数字系统,包括在FPGA上的实现。**2. CNN基础知识**卷积神经网络(CNN)是深度学习中的关键组成部分,尤其在图像识别和处理领域表现出色。CNN由多个层次组成,包括卷积层、池化层和全连接层。- **卷积层**:是CNN的核心,通过卷积核(滤波器)对输入图像进行滑动运算,提取特征。每个卷积核会生成一个特征映射,这些映射共同构成特征图。- **池化层**:用于减小数据维度,降低计算复杂性,同时保持关键信息。常见的池化操作有最大池化和平均池化。- **全连接层**:在CNN的最后阶段,将所有特征图展平为一维向量,并连接到一个或多个全连接层,用于分类或回归任务。**3. Vivado 2019.2简介**Xilinx的Vivado是一款综合性的设计工具,支持FPGA的开发流程,包括IP核开发、逻辑综合、时序分析、布局布线等。Vivado 2019.2版本提供了更高效的设计环境和优化工具,使得硬件实现CNN成为可能。**4. CNN硬件实现**在FPGA上实现CNN,通常会针对特定层进行优化。例如:- **卷积层**:可以采用并行处理策略,每个处理单元负责一部分卷积计算,提高计算速度。- **池化层**:通常较为简单,可以直接硬件实现。- **全
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值