机器学习
Ricky_Fung
「Stay hungry. Stay foolish.」
展开
-
机器学习概述
概要 机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可原创 2014-12-07 21:47:10 · 1702 阅读 · 0 评论 -
K-Means(K均值) 算法
K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。K是我们事先需要给定的聚类数目(K小于样本的个数N)。K-Means聚类算法主要分为三个步骤:(1)随机在样本中选取K个样本点作为聚类中心。(2)计算每个点到聚类中心的距离,将每个点聚类到原创 2014-12-11 15:16:14 · 4579 阅读 · 0 评论 -
KNN(K近邻)算法
介绍 K近邻算法又叫KNN(K Nearest Neighbor)算法,这个算法是机器学习里面一个比较经典的算法,其中的K表示最接近自己的K个数据样本。KNN和K-Means算法的区别K-Means算法用来聚类,用来判断哪些样本是一个比较相近的类型,属于非监督算法。KNN算法是用来做分类的。也就是说,有一个数据集里的样本的label已经确定了,然后,给原创 2014-12-10 18:25:16 · 1573 阅读 · 0 评论