1、序言
这是《漫谈经典排序算法系列》第四篇,解析了归并排序。
各种排序算法的解析请参考如下:
《漫谈经典排序算法:五、线性时间排序(计数、基数、桶排序)》
注:为了叙述方便,本文以及源代码中均不考虑A[0],默认下标从1开始。
2、归并排序
2.1 引出
归并排序又是另一类排序算法,它是一种基于“分治”策略的一种算法。归并排序算法是典型的分治算法,对于规模较大的问题,可以分解成若干容易求解的简单的问题,最后把解合并构成初始问题的解。详细的排序过程可以参考《数据结构》或者《算法导论》。
2.2 代码
#include<stdio.h> #include<stdlib.h> #define INFINITE 1000 //对两个序列进行合并,数组从mid分开 //对a[start...mid]和a[start+1...end]进行合并 void merge(int *a,int start,int mid,int end) { int i,j,k; //申请辅助数组 int *array1=(int *)malloc(sizeof(int)*(mid-start+2)); int *array2=(int *)malloc(sizeof(int)*(end-mid+1)); //把a从mid分开分别赋值给数组 for(i=0;i<mid-start+1;i++) *(array1+i)=a[start+i]; *(array1+i)=INFINITE;//作为哨兵 for(i=0;i<end-mid;i++) *(array2+i)=a[i+mid+1]; *(array2+i)=INFINITE; //有序的归并到数组a中 i=j=0; for(k=start;k<=end;k++){ if(*(array1+i) > *(array2+j)){ a[k]=*(array2+j); j++; } else{ a[k]=*(array1+i); i++; } } free(array1); free(array2); } //归并排序 void mergeSort(int *a,int start,int end) { int mid=(start+end)/2; if(start<end){ //分解 mergeSort(a,start,mid); mergeSort(a,mid+1,end); //合并 merge(a,start,mid,end); } } void main() { int i; int a[7]={0,3,5,8,9,1,2};//不考虑a[0] mergeSort(a,1,6); for(i=1;i<=6;i++) printf("%-4d",a[i]); printf("\n"); }
2.3 效率分析
可以说合并排序是比较复杂的排序,特别是对于不了解分治法基本思想的同学来说可能难以理解。总时间=分解时间+解决问题时间+合并时间。分解时间就是把一个待排序序列分解成两序列,时间为一常数,时间复杂度o(1).解决问题时间是两个递归式,把一个规模为n的问题分成两个规模分别为n/2的子问题,时间为2T(n/2).合并时间复杂度为o(n)。总时间T(n)=2T(n/2)+o(n).这个递归式可以用递归树来解,其解是o(nlogn).此外在最坏、最佳、平均情况下归并排序时间复杂度均为o(nlogn).从合并过程中可以看出合并排序稳定。
用递归树的方法解递归式T(n)=2T(n/2)+o(n):假设解决最后的子问题用时为常数c,则对于n个待排序记录来说整个问题的规模为cn。
从这个递归树可以看出,第一层时间代价为cn,第二层时间代价为cn/2+cn/2=cn.....每一层代价都是cn,总共有logn+1层。所以总的时间代价为cn*(logn+1).时间复杂度是o(nlogn).
3、附录
参考书籍: 《算法导论》