202.Segment Tree Query-线段树的查询(中等题)

线段树的查询

  1. 题目

    对于一个有n个数的整数数组,在对应的线段树中, 根节点所代表的区间为0-n-1, 每个节点有一个额外的属性max,值为该节点所代表的数组区间start到end内的最大值。
    为SegmentTree设计一个 query 的方法,接受3个参数root, start和end,线段树root所代表的数组中子区间[start, end]内的最大值。

    注意事项
    在做此题之前,请先完成 线段树构造 这道题目。

  2. 样例

    对于数组 [1, 4, 2, 3], 对应的线段树为:
    这里写图片描述
    query(root, 1, 1), return 4
    query(root, 1, 2), return 4
    query(root, 2, 3), return 3
    query(root, 0, 2), return 4

  3. 题解

    以[start,end]与[root.start,root.end]的中间点mid的位置关系为关键点,分情况计算。如mid位于[start,end]中间则需要同时考虑左右两边的数据,否则表明[start,end]只位于root的左子树或者右子树,继续递归即可。

/**
 * Definition of SegmentTreeNode:
 * public class SegmentTreeNode {
 *     public int start, end, max;
 *     public SegmentTreeNode left, right;
 *     public SegmentTreeNode(int start, int end, int max) {
 *         this.start = start;
 *         this.end = end;
 *         this.max = max
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     *@param root, start, end: The root of segment tree and 
     *                         an segment / interval
     *@return: The maximum number in the interval [start, end]
     */
    public int query(SegmentTreeNode root, int start, int end) {
        if (root.start == start && root.end == end)
        {
            return root.max;
        }
        int leftMax = Integer.MIN_VALUE;
        int rightMax = Integer.MIN_VALUE;
        int mid = (root.start + root.end) / 2;
        if (start <= mid)
        {
            leftMax = query(root.left,start,Math.min(mid,end));
        }
        if (mid < end)
        {
            rightMax = query(root.right,start <= mid ? ++mid : start,end);
        }

        return Math.max(leftMax,rightMax);
    }
}

Last Update 2016.11.3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值