关闭

72. Edit Distance 最小编辑距离

标签: dynamic programming
67人阅读 评论(0) 收藏 举报
分类:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character

c) Replace a character


解答:

给定两个字符串str1,str2. 假设要改变str1,使得其变成str2(操作只在s1上进行). dp[i][j] 表示求s1的前i个和s2的前j个的最小编辑距离。那么有下面三种情况:

(1)若前dp[i-1][j-1]的已经求得,

若s[i] == s[j] 则dp[i][j] =dp[i-1][j-1]; 

s[i] != s[j] 则dp[i][j] =dp[i-1][j-1]+1;  将s[i]的值replace成s[j]的值

(2)若dp[i][j-1]的已经求得,则需要insert一个和s2[j]相同的,才能使其两个字符串相等,即

dp[i][j] =dp[i][j-1]+1;

(3)若dp[i-1][j]的已经求得,则只需把s1[i]删除就好 ,即

dp[i][j] =dp[i-1][j]+1; 

因此递推公式可由上式得到。

注意:由于对于第一个字符来说,前i-1个是没有字符,没法得到i-1,j-1,故对dp矩阵多加一行一列,表示字符串为空时的情形。

代码如下:


class Solution {
public:
    int minDistance(string word1, string word2) {
        int count = 0, len1 = word1.size(), len2 = word2.size();
        if(len1 == 0 && len2 == 0) return 0;
        vector<vector<int>>num(len1+1, vector<int>(len2+1,0));
        for(int i = 1; i <= len2; i++){
            num[0][i] = i;
        }
        for(int j = 1; j <= len1; j++)
            num[j][0] = j;
        for(int i = 1; i <= len1; i++){
            for(int j = 1; j <= len2; j++){
                if(word1[i-1] == word2[j-1])
                    num[i][j] = num[i-1][j-1];
                else 
                    num[i][j] = num[i-1][j-1]+1;
                num[i][j] = min(num[i][j],min(num[i-1][j], num[i][j-1])+1);
            }
        }
        return num[len1][len2];
    }
};


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:30328次
    • 积分:1917
    • 等级:
    • 排名:千里之外
    • 原创:171篇
    • 转载:1篇
    • 译文:0篇
    • 评论:3条
    最新评论