72. Edit Distance 最小编辑距离

原创 2016年08月31日 15:12:47

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character

c) Replace a character


解答:

给定两个字符串str1,str2. 假设要改变str1,使得其变成str2(操作只在s1上进行). dp[i][j] 表示求s1的前i个和s2的前j个的最小编辑距离。那么有下面三种情况:

(1)若前dp[i-1][j-1]的已经求得,

若s[i] == s[j] 则dp[i][j] =dp[i-1][j-1]; 

s[i] != s[j] 则dp[i][j] =dp[i-1][j-1]+1;  将s[i]的值replace成s[j]的值

(2)若dp[i][j-1]的已经求得,则需要insert一个和s2[j]相同的,才能使其两个字符串相等,即

dp[i][j] =dp[i][j-1]+1;

(3)若dp[i-1][j]的已经求得,则只需把s1[i]删除就好 ,即

dp[i][j] =dp[i-1][j]+1; 

因此递推公式可由上式得到。

注意:由于对于第一个字符来说,前i-1个是没有字符,没法得到i-1,j-1,故对dp矩阵多加一行一列,表示字符串为空时的情形。

代码如下:


class Solution {
public:
    int minDistance(string word1, string word2) {
        int count = 0, len1 = word1.size(), len2 = word2.size();
        if(len1 == 0 && len2 == 0) return 0;
        vector<vector<int>>num(len1+1, vector<int>(len2+1,0));
        for(int i = 1; i <= len2; i++){
            num[0][i] = i;
        }
        for(int j = 1; j <= len1; j++)
            num[j][0] = j;
        for(int i = 1; i <= len1; i++){
            for(int j = 1; j <= len2; j++){
                if(word1[i-1] == word2[j-1])
                    num[i][j] = num[i-1][j-1];
                else 
                    num[i][j] = num[i-1][j-1]+1;
                num[i][j] = min(num[i][j],min(num[i-1][j], num[i][j-1])+1);
            }
        }
        return num[len1][len2];
    }
};


LeetCode-72. Edit Distance (JAVA)字符串最小编辑距离DP&DFS

LeetCode-72. Edit Distance (JAVA)字符串最小编辑距离 动态规划

“最小编辑距离(Minimum Edit Distance)”

一、课程介绍 斯坦福大学于2012年3月在Coursera启动了在线自然语言处理课程,由NLP领域大牛Dan Jurafsky 和 Chirs Manning教授授课: https://cla...

stanford NLP第三课“最小编辑距离(Minimum Edit Distance)”

一、课程介绍 斯坦福大学于2012年3月在Coursera启动了在线自然语言处理课程,由NLP领域大牛Dan Jurafsky 和 Chirs Manning教授授课: https://cla...
  • fkyyly
  • fkyyly
  • 2014年07月08日 15:23
  • 1145

最小编辑距离(Minimum edit distance)

最小编辑距离是计算欧式距离的一种方法,可以被用于计算文本的相似性以及用于文本纠错,因为这个概念是俄罗斯科学家 Vladimir Levenshtein 在1965年提出来的,所以编辑距离又称为Leve...

两个字符串的最小编辑距离 Edit Distance

问题:Given two words word1 and word2, find the minimum number of steps required to convert word1 to wo...

最小编辑距离 | Minimum Edit Distance

关于两个字符串s1,s2的差别,可以通过计算他们的最小编辑距离来决定。 设A、B为两个字符串,狭义的编辑距离定义为把A转换成B需要的最少删除(删除A中一个字符)、插入(在A中插入一个字符)和替换(把...

Leetcode 72. Edit Distance 编辑距离 解题报告

1 解题思想编辑距离,即给了字符串T1和字符串T2,试问通过插入、删除、替换等的操作,T1可以通过几步变换成T2?这道题首先还是动态规划解决,构建n*m矩阵,位置[i,j]标示串T1[0,i]和T2[...
  • MebiuW
  • MebiuW
  • 2016年05月15日 23:56
  • 1738

[LeetCode 72] Edit Distance(编辑距离/动态规划/DP)

72. Edit DistanceGiven two words word1 and word2, find the minimum number of steps required to conve...
  • zlasd
  • zlasd
  • 2016年12月01日 23:24
  • 160

72 Edit Distance (编辑距离)

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2...

LeetCode 72. Edit Distance(编辑距离)

原题网址:https://leetcode.com/problems/edit-distance/ Given two words word1 and word2, find the minimu...
  • jmspan
  • jmspan
  • 2016年05月22日 05:18
  • 371
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:72. Edit Distance 最小编辑距离
举报原因:
原因补充:

(最多只允许输入30个字)