72. 编辑距离

87 篇文章 0 订阅
33 篇文章 5 订阅

原题链接:72. 编辑距离

 

solution:

动态规划题:

动态规划就是实现对暴力搜索的优化,达到用一个数组描述一个集合的存在。

现在有两个字符串word1和word2.

状态表示:dp[i][j]表示将word1中的前i个字母变成word2中前j的字母的方法的集合
属性:求方法数量的最小值min

状态计算:以word1中的第i个字母为例子进行分析.

添加操作:在word1中第i个字母后添加一个字母相同,表示在没有添加之前word1中的前i个字母和word2中的前j - 1个字母相同。

转移方程:dp[i][j] = dp[i][j - 1] + 1

删除操作:删除该字母变的相同,表示在删除之前word1中的前i - 1个字母和word2中的前j个字母相同。

转移方程:dp[i][j] = dp[i - 1][j] + 1

替换操作:将word1中的第i个字母替换成word2中的第j个字母,表示在替换之前word1中的前i-1个字母已经和word2中的前j - 1个字母相同。

转移方程:dp[i][j] = dp[i - 1][j - 1] + 1

无操作:说明word1中的第i个字母和word2中的第j个字母相同

转移方程:dp[i][j] = dp[i - 1][j - 1]

因此最终答案取上述方案最小值

class Solution {
public:
    int minDistance(string word1, string word2) {
        int n = word1.size();
        int m = word2.size();

        vector<vector<int>> dp(n + 1, vector<int> (m + 1));
        for(int i = 0;i <= n;i++) dp[i][0] = i;
        for(int j = 0;j <= m;j++) dp[0][j] = j;


        for(int i = 1;i <= n;i++)
            for(int j =  1;j <= m;j++) {
                dp[i][j] = min(dp[i - 1][j],dp[i][j - 1]) + 1;
                if(word1[i - 1] != word2[j - 1])
                    dp[i][j] = min(dp[i][j],dp[i - 1][j - 1] + 1);
                else dp[i][j] = min(dp[i][j],dp[i - 1][j - 1]);
            }
        return dp[n][m];

    }
};

初始化边界条件dp[i][0]只能进行删除操作 ,dp[0][j]只能进行添加操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值