常用数据归一化方法

原创 2017年08月08日 15:06:43

    数据归一化是为了缩小数量之间的相对关系以及消除指标之间的量纲影响,解决数据指标之间的可比性。数据经过归一化处理之后,各指标处于同一数量级,方便进一步处理数据。
    机器学习中数据处理时常用的数据归一化方法有以下三种:
    
1. 最值归一化(Feature scaling)
    这是一种线性归一化方法,对原始数据进行线性变换,使原始数据映射到[0,1]或者某个自定义的区间内。
    映射到[0,1]区间:


[0-1]区间

    映射到[a, b]区间:


[a, b]区间

    
2. 标准方差归一化(Standard score)
    这种方法是基于原始数据的均值和方差的归一化方法。标准化后的数据均值为0,方差为1,服从标准正态分布。


这里写图片描述

    其中,μ为原始数据均值,σ为原始数据标准方差。
    
3. 中值归一化
    此方法多用于数据中没有错误样本,只是单纯将数据等比例扩大或者缩小的情况。


这里写图片描述

更多内容

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数据归一化和两种常用的归一化方法

 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决...

机器学习中数据归一化和两种常用的归一化方法

机器学习、数据挖掘工作中,数据前期准备、数据预处理过程、特征提取等几个步骤几乎要花费数据工程师一半的工作时间。同时,数据预处理的效果也直接影响了后续模型能否有效的工作。然而,目前的大部分学术研究主要集...

数据归一化和两种常用的归一化方法

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可...

数据规范化(归一化)方法

数据挖掘中,在训练模型之前,需要对特征进行一定的处理,最常见的处理方式之一就是数据的规范化。数据的规范化的作用主要有两个:去掉量纲,使得指标之间具有可比性;将数据限制到一定区间,使得运算更为便捷。...

数据处理之标准化/归一化方法

归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。归一化是为了加快训练网络的收敛性,可以不进行归一化处理 归一化的具体作用是归纳统一样本的统计分布性。归一化...

数据标准化/归一化方法(Data Normalization Method )

一、min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下: 其中max为样本...

数据归一化的方法总结

数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能...
  • ghostlv
  • ghostlv
  • 2016年04月15日 16:13
  • 729

数据归一化方法

数据归一化方法大全在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量...
  • gu_gu_
  • gu_gu_
  • 2016年01月15日 17:09
  • 269

数据归一化的两种方法

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可...

机器学习的数据归一化方法

作用:对于不同的特征向量,比如年龄、购买量、购买额,在数值的量纲上相差十倍或者百千倍。如果不归一化处理,就不容易进行比较、求距离,模型参数和正确度精确度就会受影响,甚至得不出正确的结果。 举个例子:...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:常用数据归一化方法
举报原因:
原因补充:

(最多只允许输入30个字)