自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(199)
  • 收藏
  • 关注

原创 11月15日 套壳网站赚的盆满钵满

Windsurf Editor 一个新的 AI IDE目前还没有等待列表,没有包月套餐、全免费就可以用 Claude 3.5。据说可以使用类似的Bolt的方式一句话开始一个项目,可以一键化帮助你安装依赖输入命令启动项目。

2024-11-15 16:47:37 623

原创 11月14日 当Claude也拥有强大的思维链

Claude表面上没有像Chatgpt那样用思维链CoT。而思维链对于大模型处理某些复杂问题上会有很大的加成的。所以作者想着能不能给加一个这样的思维链。地址是:之后我可能会专门写文章去分析一下这些提示词,包括之前李继刚的提示词加持了该提示词的Claude有多强可以直接手搓一个上手即玩的愤怒的小鸟可以手搓一个计算器可以写一段非常惊艳的小说可以画各种各样的好看的图表真的是太酷了。

2024-11-15 16:44:43 404

原创 【AI日报】2024年11月13号

我回来啦!!发现自己好久不发文章了。之后因为时间关系,可能要自己出来单干了。在实习过程中学到的持续了解最新资讯的习惯不能丢掉,所以想维护一个日报,记录自己想去体验的优秀产品或者一些有趣的Idea,会同步到CSDN,知乎,github等一些平台上。这是因为之后想做一个好的产品,那就需要大量的去学习他人的产品,了解他人的产品加油!!!今天。

2024-11-13 20:27:08 475

原创 【论文阅读】StoryMaker | 更全面的人物一致性开源工作

StoryMaker结合了多重条件,包括面部识别和裁剪的人物图像(包括服装、发型和身体),将两个特征通过一种叫做(位置感知感知重采样器 (PPR) 的方法 将面部身份信息与裁剪的字符图像相结合,以获得不同的人物特征。虽然脸一致了,但是比如衣服和身体,头发样式上的一致性很难保证,这些进而阻碍了创建连贯的叙事的能力。为了防止多个人物和背景的混杂,分别通过带有分割遮挡的MSE损失来限制了不同人物和背景的交叉注意力。具体来说,首先使用人脸编码器提取人物的面部信息,即面部特征,在维持脸部一致性上取得了显著性的成功。

2024-09-25 09:32:20 1342 1

原创 【前沿解析】奥特曼最新发文 | The Intelligence Age智能时代即将来临

OpenAI创始人萨姆奥特曼在9月23号晚上罕见的发表了一篇长文章解析The Intelligence Age智能时代。链接在这里我简单做个翻译。

2024-09-24 10:33:34 1023

原创 【报告阅读】chatgpt-o1 技术报告阅读 | 新的迭代开始了~

OpenAI o1是通过强化学习去进行复杂推理,在它回答之前,他会经过复杂的内部思维链的思考。经过强化训练的o1多强。

2024-09-22 11:45:03 1847

原创 【论文阅读】A Survey on Large Language Model based Autonomous Agents

基于大语言模型的自主agent的构建,提出一个一致的框架涵盖大部分的前沿工作,然后总览整体的一些AI agent在社会科学,自然科学和工程上的应用。最后,提出了一些研究策略。AI agent实际上就是希望通过自我直接的规划并且行动。

2024-06-30 16:40:50 604

原创 【论文阅读】AttnDreamBooth | 面向文本对齐的个性化图片生成

(1) Textual Inversion:容易出现过拟合概念的情况(即只看到概念,而忽视其他的prompt) 对于text embedding做注入。最经典的比如一些好玩的动漫人物的概念,SD大模型本身是不知道这些概念的,但是通过概念注入是可以实现的从而生成对应的动漫人物。(2)DreamBooth:容易忽视概念(即可以看到其他prompt,不能看到概念)对于原本的扩散模型做微调。使用灵活的文本控制可以实现一些特定的概念的注入从而实现个性化的图片生成。两个主要的传统的实现方式。方法由三个训练阶段组成。

2024-06-16 22:24:54 731 1

原创 【记录总结】一切都是全新的开始|未来博客规划,专栏整理!

很多人将这个防御能力视为一个消耗品,防御了一次就好像自损999,我决定和他们不同,我将他视为了可锻炼的,好比肌肉一样,每抵御一次,我就给自己记录一个杀,表明自己能力成长了,我决定这样去做了嘿嘿。我决定要锻炼我的抵抗诱惑的能力,这里的诱惑是广义的,即任何的你觉得会一时爽的内容,但是长时间来看确实让你不爽的事情,比如吃不健康的炸鸡,比如玩游戏不停下来,比如XXX ……但是最近状态差了很多,差到好像化成了一坨烂泥,别说扶上墙了,连成型都很难做到了,尝试了很多很多的方法,但是一直在恶性循环。

2024-06-15 16:48:12 1072 2

原创 【C++】基础复习 运算符|算数、关系、逻辑、赋值、位运算符

浮点数的表示在二进制系统中可能无法完全精确地表示某些十进制数,因此直接比较浮点数可能会导致不正确的结果。为了避免直接比较的误差,应该使用一个小的差值(通常称为 epsilon)来判断两个浮点数是否“足够接近”。根据操作数的类型(整数或浮点数),除法运算的结果会有所不同。在 C++ 中,浮点数比较是否相等时,应该用一个差值精度去判断,而不是直接使用。在进行多次浮点运算时,舍入误差会累积,导致最终结果与预期值存在微小的差异。如果两个操作数一个是整数,一个是浮点数,结果会是浮点数。,因为整数除法会舍弃小数部分。

2024-06-11 23:01:55 1267

原创 【C++】 基础复习 | 数据类型,输入,输出流 scanf printf

是 C 语言中两个非常重要的标准输入输出函数,它们分别用于从标准输入(通常是键盘)读取数据和向标准输出(通常是屏幕)打印数据。在这种情况下如果想控制输出,即满足一定格式输出,比如保留几位小数什么的,就要用manipulator了。需要变量的地址 ,即前面需要加一个&。函数用于从标准输入读取数据,并根据格式字符串解析这些数据。存储内存地址的变量。用户定义的复合数据类型,用于将不同类型的数据组合在一起。称做流式输入输出,

2024-06-11 22:59:16 1115

转载 【论文导读】驾驭未来,随车应“变”:一种融入驾驶风格感知的两阶段

【论文导读】驾驭未来,随车应“变”:一种融入驾驶风格感知的两阶段

2024-05-24 21:12:44 248

原创 【代码实战记录】网络训练一般架 | 训练前 中 后

一般网络训练都要把这些做到做到以后方便我们进行调整,配置获得更好的效果之后我们的实战任务会进一步详细解析这里的每一个内容的。

2024-05-16 19:39:01 482

原创 【工具推荐】好用的电脑文件检索工具 everything

之前每次想要检索一些电脑中的文件,软件什么之类的只能在“我的电脑”里面,搜索我去,真的是巨慢无比~,搜好了有些时候又忘记了,然后就得重新搜直到我发现了……Everything他的名字起的确实好,想找的任何东西都可以迅速得到此外,Everything占用的系统资源非常少,非常小巧,几个MB,不会对正常的电脑使用造成影响。

2024-05-13 22:23:38 779

原创 【问题解决】关于pip缓存,HUggingface缓存,HUggingface无法正常下载的问题解决

第一个问题我在安装的pip install torch的时候,出现了C盘磁盘空间不够的问题但是我的环境明明在E盘啊,给我整不会了!!!后来发现是因为缓存的问题感觉理解缓存相关机制可以更好debug~先来回答缓存在哪里。

2024-05-11 00:04:35 1756

原创 【问题解决】| 关于This error originates from a subprocess, and is likely not a problem with pip问题

2、出现上述问题的原因是虽然pip可以搜索并下载中间的某一个版本,但是下载好以后不支持对应版本的python~相当于pip有一个下载源,下载源里面可以提供这些版本的numpy 从1.3.0到1.26.4。一般情况,如果在不指定包的版本的时候,pip会默认下载可下载版本里面的最新的稳定版~这个库和python版本不兼容,python版本过高导致。一般只需要降低python版本,或者升高库的版本即可。写代码配环境的时候,无意间碰到这样一个问题。查了网上的博客之后,大概的意思是——

2024-05-08 18:35:00 647

原创 【Python进阶】 类的系统知识总结 | 特殊变量方法 单双下划线、继承、多态、装饰器

类的定义使用class关键字定义类。类名通常采用首字母大写的驼峰命名法。类内有属性和方法(方法即函数)类可以拥有属性,这些属性是类的一部分,可以是数据。类可以定义方法,这些方法在类的对象上进行操作。方法通常通过self参数访问对象的属性。

2024-05-07 23:55:11 990

原创 【前沿模型解析】一致性模型CM 1 | 离散时间模型到连续时间模型数学推导

通过泰勒级数展开,我们将。

2024-05-06 23:21:14 1385

原创 【优秀开源项目】每日跟踪 OpenVoice ,AI快站,OpenVoice

持续更新好玩的开源AI项目或AI商业应用体验一起来玩转AI!!

2024-04-26 22:01:29 668

原创 【工具使用】神经网络训练高效可视乎库visdom | 使用方式 概念全梳理

我们知道深度学习训练过程中,非常重要的一部分是深度学习的可视乎一般主流的是tensorboard还有我在一个代码中看到了visdom,感觉非常Nice想系统学习并了解一下相关内容Visdom 是一个由 Facebook Research 开发的开源可视化工具,主要用于数据可视化,特别适用于深度学习实验中的实时数据监控。它支持多种数据类型,包括数值、图像、文本和视频等,并且与 PyTorch 紧密集成,同时也支持 Torch 和 Numpy 数据结构。

2024-04-26 15:00:15 937

原创 【论文解析】笔触渲染生成 前沿工作梳理

最近的一些工作梳理2023年 Stroke-based Neural Painting and Stylization with Dynamically Predicted Painting Region2022年Im2Oil: Stroke-Based Oil Painting Rendering with Linearly Controllable Fineness Via Adaptive Sampling。

2024-04-24 19:24:43 979

原创 【每日AIGC】4月10日最新AI界好玩的

1040亿的 参数的开源模型Command R+与GPT4 打成平手这是首次开源模型追平GPT4Command R+的研发公司Cohere的CEO是Transformer最年轻的作者Aidan Gomez简称割麦子Huggingface 联合创始人说:2024年,开源和闭源两条路上,人工智能团队发展都如此之快。

2024-04-10 21:25:30 447

原创 【前沿模型解析】潜在扩散模型 2-3 | 手撕感知图像压缩 基础块 自注意力块

同ResNet一样,注意力机制应该也是神经网络最重要的一部分了。想象一下你在观看一场电影,但你的朋友在给你发短信。虽然你正在专心观看电影,但当你听到手机响起时,你会停下来查看短信,然后这时候电影的内容就会被忽略。这就是注意力机制的工作原理。在处理输入序列时,比如一句话中的每个单词,注意力机制允许模型像你一样,专注于输入中的不同部分。模型可以根据输入的重要性动态地调整自己的注意力,注意自己觉得比较重要的部分,忽略一些不太重要的部分,以便更好地理解和处理序列数据。具体来说,是通过q,k,v实现的。

2024-04-09 20:26:51 1248

原创 【前沿模型解析】潜在扩散模型 2-2 | 手撕感知图像压缩基础块上下sample块

这是因为这个网络在设计的过程中,尽量维持卷积核尺寸大小统一且是奇数(这里是3),所以假设我们直接用卷积核自带的填充,则默认是对称填充,则会导致不能整除而出错。最后输出尺寸大小为(公式 $ \frac{特征图长或宽+2*填充尺寸-卷积核尺寸}{步长}+1$)这时候我们只需要填充一侧(非对称填充)填充完后,尺寸大小是129。这里注意一点,我们在实现过程中,用了非对称的填充。这里的上采样方式比较简单,通过插值实现的。上采样即改变特征图大小为原本的2倍。下采样,即改变特征图的尺寸。方式二的话是没有参数的。

2024-04-09 20:24:57 1048

原创 【前沿模型解析】潜在扩散模型 2-1 | 手撕感知图像压缩 基础块ResNet块

我们可以选择直接开到目的地,也可以选择在途中设置几个“中转站”,但是中转站多了有可能会丢失最终目的地的信息,中途有好玩的就被吸引了,所以我们有时候要直接开车前往目的地,避免一些信息的丢失或遗忘。是因为BN在Batch_size比较小的时候,表现很差,而我们在图像生成的实际任务中,由于分辨率比较大,所以Batch_size往往比较小。残差结构应该是非常重要的基础块之一了,你肯定会在各种各样的网络模型结构里看到残差结构,他是非常强大的~不是用的传统的批归一化BN,而是用的组归一化GN。

2024-04-06 23:19:04 1154

原创 【前沿模型解析】潜在扩散模 1 | LDM第一阶段-感知图像压缩总览

首先最重要的是网络结构本身复杂,再者代码也不容易看懂,LDM代码是通过包含着大量的动态导入包,Pytorch_lighting框架实现,不是我们所熟悉的pytorch框架,因而会对代码阅读造成更大的困难~AE距离生成图像就差一步,想一想,如果我们编码后的向量服从某一个规律,比如服从正态分布,那么这时候从这个正态分布随机采样一个向量,就可以生成图片了,这时候还可以生成一些多样的原本没有的图片。的了,是量子化的,也就是说,只能是某些特定的离散的小数,比如1.1,1.2,1.3 不存在中间态。

2024-04-06 23:16:44 2955 1

原创 【Python进阶】einops库的总:张量重排,重复,堆叠操作利器 | rearrange reduce repeat stack

深度学习中,往往需要大量的形状改变,我见到的最多的便是rearrange他其实是属于einops这个库的,这个库的更多使用方式整理如下。

2024-03-27 23:37:10 1123

原创 【学海拾贝】| 关于Python的 PEP 484规则了解:类型提示,函数注解

在实际的工厂在实际的工程代码的开发中,常常可以碰到这种情况上网查了之后发现这是PEP484规则~

2024-03-26 23:52:41 851

原创 【Python进阶】工厂函数 | 高效处理管理对象的创建逻辑

工厂函数是一种设计模式,它用于创建对象而无需指定明确的类。在Python中,工厂函数通常是一个函数,它返回其他对象。工厂函数可以帮助简化对象的创建过程,并提供更灵活的方式来管理对象的创建逻辑。class Dog:# 使用工厂函数创建对象print(my_dog.name) # 输出 "Buddy"在这个例子中,create_dog函数是一个工厂函数,它接受一个参数name,并返回一个Dog类的实例。通过调用create_dog函数,我们可以创建一个Dog对象,而无需直接实例化Dog类。

2024-03-26 23:46:32 717

原创 【Python进阶】argparse库基础用法全总结:高效脚本参数解析 | 参数类型使用代码

argparse库是 Python 标准库中用于解析命令行参数和选项的模块。它使得编写命令行界面(CLI)变得更加容易。,在深度学习中用到的比较多~~我们运行Python文件往往是直接输入命令但是如果我们想给Python文件脚本运行时候传入参数,像是下面这种该怎么做呢?就是要用到argparse库~将argparse库的基础用法总结如下。

2024-03-25 22:47:57 9259

原创 【python进阶】python中的*妙用全解析:高效收集分配参数 | 单个*,两个*,混用情况

这时候我们会发现,可以传入多个位置参数输出作用是将调用时提供的所有值,放在一个元组里。如果我们想给函数传入关键字参数,如果用2.1的方式就会报错所以我们可以通过**的方式输出。

2024-03-25 12:16:35 1044

原创 【Python进阶】OmegaConf库:高效配置项管理 | 访问配置文件,修改合并配置文件

OmegaConf。

2024-03-24 23:36:18 2365

原创 【工具使用】Markdown基础(重置版) | 文本操作,表情,列表,表格,跳转链接,图片

为什么要学MarkDown语法最开始朋友给我介绍的时候,我还不以为意,觉得Word多好用啊。但当我后来深入使用之后,发现了Markdown的魅力1 简洁高效,粘贴一些东西的时候不需要字符匹配之类的2 很多编辑器都支持Markdown语法,适配性通用性很强3 熟练之后很方便进行输入一些公式,特殊标记等待学习的时候最好用Typora等编辑器~

2024-03-20 09:58:08 397

原创 【工具推荐】tmux 终端与会话分离神器 | 再也不用担心训练到一半不小心关闭终端导致训练终止了

tmux是一个 terminal multiplexer(终端复用器),它可以启动一系列终端会话。是非常强大的。但在正式讲解之前,我们需要了解两个概念,一个是终端,一个是会话在Linux中,"终端"通常指的是用户与系统交互的文本界面,可以是物理终端设备(如终端机)或虚拟终端(如终端仿真器)。终端提供了一个命令行界面,用户可以在其中输入命令并查看命令的输出。"会话"则是指用户在终端上与系统交互的一段时间内的一些操作任务。当用户登录到系统时,在终端上开始一个新的会话。

2024-03-18 11:40:11 815

原创 【机器学习】降维与度量学习 | 多维度嵌入,主成分分析,核化线性降维

等度量映射的基本思想是首先通过近邻图(neighborhood graph)来估计数据点之间的测地距离,然后利用多维缩放(MDS)等技术将高维数据映射到低维空间中,使得在低维空间中的欧氏距离尽可能地近似于在高维空间中的测地距离。核化线性降维的基本思想是,在将数据映射到高维空间之后,利用核技巧(Kernel Trick)将高维空间中的内积操作替换为核函数的计算,从而避免了直接计算高维空间的特征向量,减少了计算复杂度。KNN其实没有显式的训练过程,它是懒惰学习的代表,而之前学的是急切学习,

2024-03-18 11:05:31 962

原创 【Python进阶】关于argparse库的使用:便捷参数读取,解析,编写

在Python中,parser包通常指的是argparse模块,它是Python标准库中的一部分,用于解析命令行参数。argparse模块使得编写命令行接口变得更加简单和灵活。下面是argparse。

2024-03-17 21:36:55 913

原创 【学海拾贝】文件大小和实际占用空间大小不一致的情况思考:加深文件系统分配理解

如果这个空间用不完,且文件内容少,Windows就会把内容直接写到索引空间里空余的地方。也就是说操作系统只会给某一个文件分配一个簇,两个簇,一直到N多个簇,不会出现1.5个簇,即不会出现两个不同公用一个簇的情况,这也就好理解了。这是因为操作系统的文件系统(NTFS)是按簇去分配空间的,簇是分配空间的最小单位,是4KB(4096字节),什么意思。如果文件内容增加了,超过了索引区的大小,就会把内容从索引空间里移出去分配磁盘空间保存。也就是说占用空间只能是4KB的整数倍,而文件大小却不一定是4KB的整数倍。

2024-03-14 16:30:48 2539

原创 【深度学习拾遗】四种归一化方式对比:| LayerNorm,BatchNorm,InstanceNorm,GroupNorm

归一化技术可以很好地,缓解梯度消失/爆炸问题,并有助于更快地收敛,也是一种正则化技术防止过拟合实际中会看到好多归一化比如BatchNorm,LayerNorm,GroupNorm,InstanceNorm。

2024-03-13 22:18:59 7351 1

原创 【机器学习】集成学习:发挥1+1大于2的功效 | 集成学习基础原理,概念,Boosting,Bagging与随机森林

Bagging(Bootstrap Aggregating)是一种集成学习方法,旨在通过训练多个相互独立的分类器,并将它们的预测结果进行组合来改善分类的准确性。Boosting算法的工作方式是按顺序训练一系列的弱分类器,每个弱分类器都试图纠正前一个分类器的错误。这些弱分类器通常是简单的模型,例如决策树,它们在某些方面表现不佳,但当它们结合在一起时,可以产生更强大的模型。AdaBoost的关键在于不断调整样本的权重,使得每个新的分类器都集中在前一个分类器分错的样本上,从而提高整体的分类性能。

2024-03-13 09:23:18 805

原创 【Python进阶】assert 使用 | assert触发条件,使用实践示例

assert是 Python 中的一个关键字,用于在代码中进行断言检查。它的作用是在条件为False的情况下触发异常,用于帮助开发者在程序中捕获和处理错误。assert其中expression是要进行断言检查的条件,message是可选的错误消息,当断言失败时会显示该消息。如果expression的结果为False,则会引发异常。x = 10在这个例子中,由于x的值不等于5,所以断言会失败,触发异常,并显示消息。在开发过程中,assert可以帮助开发者快速发现程序中的问题,并进行调试和修复。

2024-03-12 21:56:56 1603

pandas库学习配套资源

包含CSV文件,JSON文件,有问题数据集CSV文件

2023-02-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除