euclid algorithm(greast common divisor)

#include <iostream>

using namespace std;

void swap(int &a, int &b)
{
    int tmp;
    tmp = a;
    a = b;
    b = tmp;
}

int euclid_fun(int m ,int n)
{
    if (n > m)
        swap(m, n);
    int r = m % n;

    while(r != 0)
    {
        m = n;
        n = r;
        r = m % n;
    }

    return n;
}

int main(){
    int m = 24;
    int n = 30;

    int gcd = euclid_fun(m,n);
    cout << " the greatest common factor is : " << gcd << endl;


    return 0;
}



#include <iostream>

using namespace std;

void swap(int &a, int &b)
{
    int t;
    t = a;
    a = b;
    b = t;
}

int fuclid_fun(int &a, int &b)
{
    if (b > a)
        swap(a,b);
    a = a % b;
    if (a == 0){
        return b;
    }else {
        b = b % a;
        if ( b == 0)
        {
            return a;
        }
        else{
            fuclid_fun( a, b);
        }
    }
}
int main(){

    int a = 2166;
    int b = 6099;
    int gcd = fuclid_fun (a ,b);
    cout << gcd << endl;

    return 0;
}


Proof of validity[1]

The validity of the Euclidean algorithm can be proven by a two-step argument.[16] In the first step, the final nonzero remainder rN−1 is shown to divide both a and b. Since it is a common divisor, it must be less than or equal to the greatest common divisor g. In the second step, it is shown that any common divisor of a and b, including g, must divide rN−1; therefore, g must be less than or equal to rN−1. These two conclusions are inconsistent unless rN−1 = g.

To demonstrate that rN−1 divides both a and b (the first step), rN−1 divides its predecessor rN−2

rN−2 = qN rN−1

since the final remainder rN is zero. rN−1 also divides its next predecessor rN−3

rN−3 = qN−1 rN−2 + rN−1

because it divides both terms on the right-hand side of the equation. Iterating the same argument, rN−1 divides all the preceding remainders, including a and b. None of the preceding remainders rN−2rN−3, etc. divide a and b, since they leave a remainder. Since rN−1 is a common divisor of a and brN−1 ≤ g.

In the second step, any natural number c that divides both a and b (in other words, any common divisor of a and b) divides the remainders rk. By definition, a and b can be written as multiples of ca = mc and b = nc, where m and n are natural numbers. Therefore, c divides the initial remainder r0, since r0 = a − q0b = mc − q0nc = (m − q0n)c. An analogous argument shows that c also divides the subsequent remainders r1r2, etc. Therefore, the greatest common divisor g must divide rN−1, which implies that g ≤ rN−1. Since the first part of the argument showed the reverse (rN−1 ≤ g), it follows that g = rN−1. Thus, g is the greatest common divisor of all the succeeding pairs:[17][18]

g = gcd(ab) = gcd(br0) = gcd(r0r1) = … = gcd(rN−2rN−1) = rN−1.

example

a = 1071 and b = 462



[1]. http://en.wikipedia.org/wiki/Euclidean_algorithm


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值