euclid algorithm(greast common divisor)

#include <iostream>

using namespace std;

void swap(int &a, int &b)
{
    int tmp;
    tmp = a;
    a = b;
    b = tmp;
}

int euclid_fun(int m ,int n)
{
    if (n > m)
        swap(m, n);
    int r = m % n;

    while(r != 0)
    {
        m = n;
        n = r;
        r = m % n;
    }

    return n;
}

int main(){
    int m = 24;
    int n = 30;

    int gcd = euclid_fun(m,n);
    cout << " the greatest common factor is : " << gcd << endl;


    return 0;
}



#include <iostream>

using namespace std;

void swap(int &a, int &b)
{
    int t;
    t = a;
    a = b;
    b = t;
}

int fuclid_fun(int &a, int &b)
{
    if (b > a)
        swap(a,b);
    a = a % b;
    if (a == 0){
        return b;
    }else {
        b = b % a;
        if ( b == 0)
        {
            return a;
        }
        else{
            fuclid_fun( a, b);
        }
    }
}
int main(){

    int a = 2166;
    int b = 6099;
    int gcd = fuclid_fun (a ,b);
    cout << gcd << endl;

    return 0;
}


Proof of validity[1]

The validity of the Euclidean algorithm can be proven by a two-step argument.[16] In the first step, the final nonzero remainder rN−1 is shown to divide both a and b. Since it is a common divisor, it must be less than or equal to the greatest common divisor g. In the second step, it is shown that any common divisor of a and b, including g, must divide rN−1; therefore, g must be less than or equal to rN−1. These two conclusions are inconsistent unless rN−1 = g.

To demonstrate that rN−1 divides both a and b (the first step), rN−1 divides its predecessor rN−2

rN−2 = qN rN−1

since the final remainder rN is zero. rN−1 also divides its next predecessor rN−3

rN−3 = qN−1 rN−2 + rN−1

because it divides both terms on the right-hand side of the equation. Iterating the same argument, rN−1 divides all the preceding remainders, including a and b. None of the preceding remainders rN−2rN−3, etc. divide a and b, since they leave a remainder. Since rN−1 is a common divisor of a and brN−1 ≤ g.

In the second step, any natural number c that divides both a and b (in other words, any common divisor of a and b) divides the remainders rk. By definition, a and b can be written as multiples of ca = mc and b = nc, where m and n are natural numbers. Therefore, c divides the initial remainder r0, since r0 = a − q0b = mc − q0nc = (m − q0n)c. An analogous argument shows that c also divides the subsequent remainders r1r2, etc. Therefore, the greatest common divisor g must divide rN−1, which implies that g ≤ rN−1. Since the first part of the argument showed the reverse (rN−1 ≤ g), it follows that g = rN−1. Thus, g is the greatest common divisor of all the succeeding pairs:[17][18]

g = gcd(ab) = gcd(br0) = gcd(r0r1) = … = gcd(rN−2rN−1) = rN−1.

example

a = 1071 and b = 462



[1]. http://en.wikipedia.org/wiki/Euclidean_algorithm


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值