logistic regression 最基础的分类算法

原创 2015年07月06日 19:16:09

介绍

logistic regression是一种最基本的分类算法。它的模型为,其中

其代价函数
对于二分类问题,y的取值为0和1,这里,我们设定为y=1概率。当其大于等于0.5时,我们预测结果为1,当其小于0.5时,我们预测结果为0。

使用梯度下降算法

迭代公式:其中。推导过程见下图。




矢量化表达:


 matlab实现

见下篇
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Logistic Regression 分类算法

Logistic Regression 分类算法 Logistic Regression包含三个部分:回归,线性回归,Logistic方程 1) 回归 Logistic regres...

机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)

形式: 采用sigmoid函数:g(z)=11+e−zg(z)=\frac{1}{1+e^{-z}} 其导数为g′(z)=(1−g(z))g(z)g^\prime(z)=(1-g(z))g(z...

机器学习笔记04:逻辑回归(Logistic regression)、分类(Classification)

我们已经大概学习了用线性回归(Linear Regression)来解决一些预测问题,详见: 1.《机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient De...

逻辑回归分类器(Logistic Regression Classifier)

Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性,也用来进行分类。 在分类的情形下,经过学习之后的LR分类器其实就是一组权值w0,w1,....

logistic regression 分类:机器学习

logistic regression:numpy 向量化运算可以很快地完成切片任务。 如根据条件构造数据集时 取条件union可以通过bool矩阵的加法完成,对偶地intersection可通过bo...

Andrew Ng 《Machine Learning》第三讲——分类(Classification)&逻辑回归(Logistic Regression Model)

介绍分类问题、逻辑回归,包括Hypothesis Representation\Decision Boundary\Cost Function\Simplified Cost Function\Gra...

logistic regression 多类别的分类问题 sigmoid function 判决边界

logistic regression (逻辑回归)产生的目的是解决回归问题,对于二元分类问题,预测函数hθ(x)最好是介于[0,1]之间,所以回归函数 符号这个要求,谨记逻辑回归是分类函数。不是为...

机器学习2——分类和逻辑回归Classification and logistic regression(牛顿法待研究)

不同于回归问题,分类问题是指预测值y只有几个离散的值,这里只讲binary classification 二分类问题,即y只取0,1。Logistic regression1 why logistic...

[机器学习]逻辑回归,Logistic regression |分类,Classification

本文是 Andrew Ng 《机器学习》公开课的学习笔记 现实中的例子有 ,垃圾邮件/非垃圾邮件, 肿瘤是良性还是恶性等等。 怎么分类? 我从高中数学积累了一个经验。假设直线方程...

线性分类器:Logistic Regression

本内容整理自coursera.欢迎交流转载。 1 回顾  在这篇博客里我描述过直线、平面和超平面的分类。2 逻辑回归  什么是logistic regression?   假设我们有N个独立向量,每...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)