machine learning
鱼蛋蛋哥
这个作者很懒,什么都没留下…
展开
-
linear regression
模型 梯度下降算法 对于线性回归,只有一个局部最优解,也就是全局最优解。 使用梯度下降算法,只需要求出一个局部最优解即可。 梯度下降求线性回归 令,则原创 2015-06-25 09:18:26 · 526 阅读 · 0 评论 -
logistic regression 最基础的分类算法
s原创 2015-07-06 19:16:09 · 489 阅读 · 0 评论 -
线性回归和逻辑回归的正则化regularization
线性回归 介绍 为了防止过度拟合,正则化是一种不错的思路。能够使得获得的边界函数更加平滑。更好的模拟现实数据,而非训练样本。 方法 可以说,regularization是添加惩罚,使得参数接近于零,这里1进行regularization。 正规化后的代价函数。则该代价函数梯度见图一中(1-1)。 对于使用梯度下降算法,其梯度的矢量表达见图一中(1-2)。 对于原创 2015-07-17 08:37:26 · 3109 阅读 · 0 评论 -
极大似然法推导线性回归和逻辑回归代价(cost)函数
问题描述 现使用在Andrew-ng教程上的房价与房间面积的例子。 假设房价与房间面积之间存在着线性关系。 在实际的预测中,由于不可能找到所有影响房价的因素,因此无法完美准确的预测房价与房子大小的关系。我们勉为其难,只需要找到一个最近似的关系,所以只要把其他因素都看成是一些与房子大小无关的小噪声就好了。于是就得出:,其中的就是一些与房子大小无关的小噪声,可以用随机变量E来表示。这样就得到了:原创 2015-07-15 11:35:55 · 4799 阅读 · 0 评论 -
BP算法代价函数的偏导数
1.模型介绍 2.BP算法 3.实现matlab代码 见网盘:http://pan.baidu.com/s/1hqjcZru http://pan.baidu.com/s/1dDIuX6h原创 2015-07-23 10:28:57 · 1125 阅读 · 0 评论 -
week6-week11
欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和图片上传 LaTex数学公式 UML序列图和流程图 离线写博客 导入导出Markdown文件 丰富的快捷键 快捷键 加粗 Ctrl + B 斜体 Ctrl + I 引用 Ctrl原创 2015-08-03 20:04:48 · 500 阅读 · 0 评论