bzoj4391[Usaco2015 dec]High Card Low Card

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4391

题目大意:

奶牛Bessie和Elsie在玩一种卡牌游戏。一共有2N张卡牌,点数分别为1到2N,每头牛都会分到N张卡牌。

游戏一共分为N轮,因为Bessie太聪明了,她甚至可以预测出每回合Elsie会出什么牌。

每轮游戏里,两头牛分别出一张牌,点数大者获胜。

同时,Bessie有一次机会选择了某个时间点,从那个时候开始,每回合点数少者获胜。

Bessie现在想知道,自己最多能获胜多少轮?

题解:

贪心

从1到n扫一遍,f[i]记录点数大的赢到i时最多能赢几轮

反过来扫一遍,g[i]记录点数小的赢到i是最多能赢几轮

用set来贪心得到f[]和g[]。

这样f[i]+g[i+1]的最大值即为最终答案。

很多人都会提到说可能一张牌在点数大的赢的时候被用了,后面改规则后也被用了,就被重复用了两次。但是其实没有关系。如果一张牌设为a被用了两次,那么就说明手中有一张牌设为b没有被用过。若a>b,那么在点数小的赢那轮可以用b去替代a来赢得胜利;反之亦然。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<set>
#include<algorithm>
#include<iostream>
using namespace std;
#define maxn 50100
#define ub upper_bound

set<int> q,p;
bool bo[maxn*2];
int a[maxn],g[maxn],f[maxn];
int mymax(int x,int y){return (x>y)?x:y;}
int main()
{
	//freopen("cardgame.in","r",stdin);
	//freopen("cardgame.out","w",stdout);
	int n,i,ans=0;
	scanf("%d",&n);
	memset(bo,true,sizeof(bo));
	for (i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		bo[a[i]]=false;
	}
	for (i=1;i<=2*n;i++) 
	 if (bo[i]) p.insert(i),q.insert(-i);
	//因为只能找到大于(等于)某数的最小值,所以要找小于某数的最大值就取相反数来找
	for (i=1;i<=n;i++)
	{
		set<int>::iterator it=p.ub(a[i]);
		if (it!=p.end()) {p.erase(*it);f[i]=f[i-1]+1;}
		else f[i]=f[i-1];
	}
	for (i=n;i>=1;i--)
	{
		set<int>::iterator it=q.ub(-a[i]);
		if (it!=q.end()) {q.erase(*it);g[i]=g[i+1]+1;}
		else g[i]=g[i+1];
	}
	for (i=0;i<=n;i++)
	 ans=mymax(f[i]+g[i+1],ans);
	printf("%d\n",ans);
	return 0;
}


题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值